Metamath Proof Explorer


Theorem opnneir

Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024)

Ref Expression
Hypothesis opnneir.1 φ J Top
Assertion opnneir φ x J S x ψ x nei J S ψ

Proof

Step Hyp Ref Expression
1 opnneir.1 φ J Top
2 anass x J S x ψ x J S x ψ
3 opnneiss J Top x J S x x nei J S
4 3 3expib J Top x J S x x nei J S
5 4 anim1d J Top x J S x ψ x nei J S ψ
6 2 5 syl5bir J Top x J S x ψ x nei J S ψ
7 6 reximdv2 J Top x J S x ψ x nei J S ψ
8 1 7 syl φ x J S x ψ x nei J S ψ