Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppgbas.1 | |- O = ( oppG ` R ) |
|
oppgtset.2 | |- J = ( TopSet ` R ) |
||
Assertion | oppgtset | |- J = ( TopSet ` O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
2 | oppgtset.2 | |- J = ( TopSet ` R ) |
|
3 | df-tset | |- TopSet = Slot 9 |
|
4 | 9nn | |- 9 e. NN |
|
5 | 2re | |- 2 e. RR |
|
6 | 2lt9 | |- 2 < 9 |
|
7 | 5 6 | gtneii | |- 9 =/= 2 |
8 | 1 3 4 7 | oppglem | |- ( TopSet ` R ) = ( TopSet ` O ) |
9 | 2 8 | eqtri | |- J = ( TopSet ` O ) |