Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgbas.1 | |- O = ( oppG ` R ) |
|
| oppgtset.2 | |- J = ( TopSet ` R ) |
||
| Assertion | oppgtset | |- J = ( TopSet ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
| 2 | oppgtset.2 | |- J = ( TopSet ` R ) |
|
| 3 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 4 | 3 1 | oppgval | |- O = ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. ) |
| 5 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 6 | tsetndxnplusgndx | |- ( TopSet ` ndx ) =/= ( +g ` ndx ) |
|
| 7 | 4 5 6 | setsplusg | |- ( TopSet ` R ) = ( TopSet ` O ) |
| 8 | 2 7 | eqtri | |- J = ( TopSet ` O ) |