Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppgbas.1 | |- O = ( oppG ` R ) |
|
oppgtset.2 | |- J = ( TopSet ` R ) |
||
Assertion | oppgtset | |- J = ( TopSet ` O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
2 | oppgtset.2 | |- J = ( TopSet ` R ) |
|
3 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
4 | 3 1 | oppgval | |- O = ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. ) |
5 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
6 | tsetndxnplusgndx | |- ( TopSet ` ndx ) =/= ( +g ` ndx ) |
|
7 | 4 5 6 | setsplusg | |- ( TopSet ` R ) = ( TopSet ` O ) |
8 | 2 7 | eqtri | |- J = ( TopSet ` O ) |