Metamath Proof Explorer


Theorem oppgtset

Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypotheses oppgbas.1
|- O = ( oppG ` R )
oppgtset.2
|- J = ( TopSet ` R )
Assertion oppgtset
|- J = ( TopSet ` O )

Proof

Step Hyp Ref Expression
1 oppgbas.1
 |-  O = ( oppG ` R )
2 oppgtset.2
 |-  J = ( TopSet ` R )
3 eqid
 |-  ( +g ` R ) = ( +g ` R )
4 3 1 oppgval
 |-  O = ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. )
5 tsetid
 |-  TopSet = Slot ( TopSet ` ndx )
6 tsetndxnplusgndx
 |-  ( TopSet ` ndx ) =/= ( +g ` ndx )
7 4 5 6 setsplusg
 |-  ( TopSet ` R ) = ( TopSet ` O )
8 2 7 eqtri
 |-  J = ( TopSet ` O )