Description: Equality for ordered pairs implies equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppr | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. -> { A , B } = { C , D } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opthg | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) | |
| 2 | preq12 |  |-  ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) | |
| 3 | 1 2 | biimtrdi |  |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. -> { A , B } = { C , D } ) ) |