Metamath Proof Explorer


Theorem opprb

Description: Equality for unordered pairs corresponds to equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023)

Ref Expression
Assertion opprb
|- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( <. A , B >. = <. C , D >. \/ <. A , B >. = <. D , C >. ) ) )

Proof

Step Hyp Ref Expression
1 preq12bg
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) )
2 opthg
 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) )
3 2 adantr
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) )
4 opthg
 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. D , C >. <-> ( A = D /\ B = C ) ) )
5 4 adantr
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( <. A , B >. = <. D , C >. <-> ( A = D /\ B = C ) ) )
6 3 5 orbi12d
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( ( <. A , B >. = <. C , D >. \/ <. A , B >. = <. D , C >. ) <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) )
7 1 6 bitr4d
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( <. A , B >. = <. C , D >. \/ <. A , B >. = <. D , C >. ) ) )