| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex |  |-  a e. _V | 
						
							| 2 |  | vex |  |-  b e. _V | 
						
							| 3 | 1 2 | pm3.2i |  |-  ( a e. _V /\ b e. _V ) | 
						
							| 4 | 3 | a1i |  |-  ( ( A e. X /\ B e. X ) -> ( a e. _V /\ b e. _V ) ) | 
						
							| 5 | 4 | anim1ci |  |-  ( ( ( A e. X /\ B e. X ) /\ ph ) -> ( ph /\ ( a e. _V /\ b e. _V ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( A e. X /\ B e. X ) /\ ph ) /\ ( A = a /\ B = b ) ) -> ( ph /\ ( a e. _V /\ b e. _V ) ) ) | 
						
							| 7 |  | sbcid |  |-  ( [. b / b ]. [. a / a ]. ph <-> [. a / a ]. ph ) | 
						
							| 8 |  | sbcid |  |-  ( [. a / a ]. ph <-> ph ) | 
						
							| 9 | 7 8 | sylbbr |  |-  ( ph -> [. b / b ]. [. a / a ]. ph ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( A e. X /\ B e. X ) /\ ph ) -> [. b / b ]. [. a / a ]. ph ) | 
						
							| 11 |  | opeq12 |  |-  ( ( A = a /\ B = b ) -> <. A , B >. = <. a , b >. ) | 
						
							| 12 | 10 11 | anim12ci |  |-  ( ( ( ( A e. X /\ B e. X ) /\ ph ) /\ ( A = a /\ B = b ) ) -> ( <. A , B >. = <. a , b >. /\ [. b / b ]. [. a / a ]. ph ) ) | 
						
							| 13 |  | nfv |  |-  F/ x ( <. A , B >. = <. a , b >. /\ [. b / b ]. [. a / a ]. ph ) | 
						
							| 14 |  | nfv |  |-  F/ y ( <. A , B >. = <. a , b >. /\ [. b / b ]. [. a / a ]. ph ) | 
						
							| 15 |  | opeq12 |  |-  ( ( x = a /\ y = b ) -> <. x , y >. = <. a , b >. ) | 
						
							| 16 | 15 | eqeq2d |  |-  ( ( x = a /\ y = b ) -> ( <. A , B >. = <. x , y >. <-> <. A , B >. = <. a , b >. ) ) | 
						
							| 17 |  | dfsbcq |  |-  ( y = b -> ( [. y / b ]. [. x / a ]. ph <-> [. b / b ]. [. x / a ]. ph ) ) | 
						
							| 18 |  | dfsbcq |  |-  ( x = a -> ( [. x / a ]. ph <-> [. a / a ]. ph ) ) | 
						
							| 19 | 18 | sbcbidv |  |-  ( x = a -> ( [. b / b ]. [. x / a ]. ph <-> [. b / b ]. [. a / a ]. ph ) ) | 
						
							| 20 | 17 19 | sylan9bbr |  |-  ( ( x = a /\ y = b ) -> ( [. y / b ]. [. x / a ]. ph <-> [. b / b ]. [. a / a ]. ph ) ) | 
						
							| 21 | 16 20 | anbi12d |  |-  ( ( x = a /\ y = b ) -> ( ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) <-> ( <. A , B >. = <. a , b >. /\ [. b / b ]. [. a / a ]. ph ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ ( x = a /\ y = b ) ) -> ( ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) <-> ( <. A , B >. = <. a , b >. /\ [. b / b ]. [. a / a ]. ph ) ) ) | 
						
							| 23 | 13 14 22 | spc2ed |  |-  ( ( ph /\ ( a e. _V /\ b e. _V ) ) -> ( ( <. A , B >. = <. a , b >. /\ [. b / b ]. [. a / a ]. ph ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) | 
						
							| 24 | 6 12 23 | sylc |  |-  ( ( ( ( A e. X /\ B e. X ) /\ ph ) /\ ( A = a /\ B = b ) ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) | 
						
							| 25 | 24 | exp31 |  |-  ( ( A e. X /\ B e. X ) -> ( ph -> ( ( A = a /\ B = b ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) | 
						
							| 26 | 25 | com23 |  |-  ( ( A e. X /\ B e. X ) -> ( ( A = a /\ B = b ) -> ( ph -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) |