Metamath Proof Explorer


Theorem or2expropbilem1

Description: Lemma 1 for or2expropbi and ich2exprop . (Contributed by AV, 16-Jul-2023)

Ref Expression
Assertion or2expropbilem1 A X B X A = a B = b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ φ

Proof

Step Hyp Ref Expression
1 vex a V
2 vex b V
3 1 2 pm3.2i a V b V
4 3 a1i A X B X a V b V
5 4 anim1ci A X B X φ φ a V b V
6 5 adantr A X B X φ A = a B = b φ a V b V
7 sbcid [˙b / b]˙ [˙a / a]˙ φ [˙a / a]˙ φ
8 sbcid [˙a / a]˙ φ φ
9 7 8 sylbbr φ [˙b / b]˙ [˙a / a]˙ φ
10 9 adantl A X B X φ [˙b / b]˙ [˙a / a]˙ φ
11 opeq12 A = a B = b A B = a b
12 10 11 anim12ci A X B X φ A = a B = b A B = a b [˙b / b]˙ [˙a / a]˙ φ
13 nfv x A B = a b [˙b / b]˙ [˙a / a]˙ φ
14 nfv y A B = a b [˙b / b]˙ [˙a / a]˙ φ
15 opeq12 x = a y = b x y = a b
16 15 eqeq2d x = a y = b A B = x y A B = a b
17 dfsbcq y = b [˙y / b]˙ [˙x / a]˙ φ [˙b / b]˙ [˙x / a]˙ φ
18 dfsbcq x = a [˙x / a]˙ φ [˙a / a]˙ φ
19 18 sbcbidv x = a [˙b / b]˙ [˙x / a]˙ φ [˙b / b]˙ [˙a / a]˙ φ
20 17 19 sylan9bbr x = a y = b [˙y / b]˙ [˙x / a]˙ φ [˙b / b]˙ [˙a / a]˙ φ
21 16 20 anbi12d x = a y = b A B = x y [˙y / b]˙ [˙x / a]˙ φ A B = a b [˙b / b]˙ [˙a / a]˙ φ
22 21 adantl φ x = a y = b A B = x y [˙y / b]˙ [˙x / a]˙ φ A B = a b [˙b / b]˙ [˙a / a]˙ φ
23 13 14 22 spc2ed φ a V b V A B = a b [˙b / b]˙ [˙a / a]˙ φ x y A B = x y [˙y / b]˙ [˙x / a]˙ φ
24 6 12 23 sylc A X B X φ A = a B = b x y A B = x y [˙y / b]˙ [˙x / a]˙ φ
25 24 exp31 A X B X φ A = a B = b x y A B = x y [˙y / b]˙ [˙x / a]˙ φ
26 25 com23 A X B X A = a B = b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ φ