Metamath Proof Explorer


Theorem or2expropbilem1

Description: Lemma 1 for or2expropbi and ich2exprop . (Contributed by AV, 16-Jul-2023)

Ref Expression
Assertion or2expropbilem1 AXBXA=aB=bφxyAB=xy[˙y/b]˙[˙x/a]˙φ

Proof

Step Hyp Ref Expression
1 vex aV
2 vex bV
3 1 2 pm3.2i aVbV
4 3 a1i AXBXaVbV
5 4 anim1ci AXBXφφaVbV
6 5 adantr AXBXφA=aB=bφaVbV
7 sbcid [˙b/b]˙[˙a/a]˙φ[˙a/a]˙φ
8 sbcid [˙a/a]˙φφ
9 7 8 sylbbr φ[˙b/b]˙[˙a/a]˙φ
10 9 adantl AXBXφ[˙b/b]˙[˙a/a]˙φ
11 opeq12 A=aB=bAB=ab
12 10 11 anim12ci AXBXφA=aB=bAB=ab[˙b/b]˙[˙a/a]˙φ
13 nfv xAB=ab[˙b/b]˙[˙a/a]˙φ
14 nfv yAB=ab[˙b/b]˙[˙a/a]˙φ
15 opeq12 x=ay=bxy=ab
16 15 eqeq2d x=ay=bAB=xyAB=ab
17 dfsbcq y=b[˙y/b]˙[˙x/a]˙φ[˙b/b]˙[˙x/a]˙φ
18 dfsbcq x=a[˙x/a]˙φ[˙a/a]˙φ
19 18 sbcbidv x=a[˙b/b]˙[˙x/a]˙φ[˙b/b]˙[˙a/a]˙φ
20 17 19 sylan9bbr x=ay=b[˙y/b]˙[˙x/a]˙φ[˙b/b]˙[˙a/a]˙φ
21 16 20 anbi12d x=ay=bAB=xy[˙y/b]˙[˙x/a]˙φAB=ab[˙b/b]˙[˙a/a]˙φ
22 21 adantl φx=ay=bAB=xy[˙y/b]˙[˙x/a]˙φAB=ab[˙b/b]˙[˙a/a]˙φ
23 13 14 22 spc2ed φaVbVAB=ab[˙b/b]˙[˙a/a]˙φxyAB=xy[˙y/b]˙[˙x/a]˙φ
24 6 12 23 sylc AXBXφA=aB=bxyAB=xy[˙y/b]˙[˙x/a]˙φ
25 24 exp31 AXBXφA=aB=bxyAB=xy[˙y/b]˙[˙x/a]˙φ
26 25 com23 AXBXA=aB=bφxyAB=xy[˙y/b]˙[˙x/a]˙φ