Metamath Proof Explorer


Theorem or2expropbilem2

Description: Lemma 2 for or2expropbi and ich2exprop . (Contributed by AV, 16-Jul-2023)

Ref Expression
Assertion or2expropbilem2 abAB=abφxyAB=xy[˙y/b]˙[˙x/a]˙φ

Proof

Step Hyp Ref Expression
1 nfv xAB=abφ
2 nfv yAB=abφ
3 nfv aAB=xy
4 nfcv _ay
5 nfsbc1v a[˙x/a]˙φ
6 4 5 nfsbcw a[˙y/b]˙[˙x/a]˙φ
7 3 6 nfan aAB=xy[˙y/b]˙[˙x/a]˙φ
8 nfv bAB=xy
9 nfsbc1v b[˙y/b]˙[˙x/a]˙φ
10 8 9 nfan bAB=xy[˙y/b]˙[˙x/a]˙φ
11 opeq12 a=xb=yab=xy
12 11 eqeq2d a=xb=yAB=abAB=xy
13 sbceq1a a=xφ[˙x/a]˙φ
14 sbceq1a b=y[˙x/a]˙φ[˙y/b]˙[˙x/a]˙φ
15 13 14 sylan9bb a=xb=yφ[˙y/b]˙[˙x/a]˙φ
16 12 15 anbi12d a=xb=yAB=abφAB=xy[˙y/b]˙[˙x/a]˙φ
17 1 2 7 10 16 cbvex2v abAB=abφxyAB=xy[˙y/b]˙[˙x/a]˙φ