Metamath Proof Explorer


Theorem or2expropbi

Description: If two classes are strictly ordered, there is an ordered pair of both classes fulfilling a wff iff there is an unordered pair of both classes fulfilling the wff. (Contributed by AV, 26-Aug-2023)

Ref Expression
Assertion or2expropbi X V R Or X A X B X A R B a b A B = a b a R b φ a b A B = a b a R b φ

Proof

Step Hyp Ref Expression
1 nfv a X V R Or X A X B X A R B
2 nfv a A B = x y
3 nfcv _ a y
4 nfsbc1v a [˙x / a]˙ a R b φ
5 3 4 nfsbcw a [˙y / b]˙ [˙x / a]˙ a R b φ
6 2 5 nfan a A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
7 6 nfex a y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
8 7 nfex a x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
9 nfv b X V R Or X A X B X A R B
10 nfv b A B = x y
11 nfsbc1v b [˙y / b]˙ [˙x / a]˙ a R b φ
12 10 11 nfan b A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
13 12 nfex b y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
14 13 nfex b x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
15 vex a V
16 vex b V
17 preq12bg A X B X a V b V A B = a b A = a B = b A = b B = a
18 15 16 17 mpanr12 A X B X A B = a b A = a B = b A = b B = a
19 18 3adant3 A X B X A R B A B = a b A = a B = b A = b B = a
20 19 adantl X V R Or X A X B X A R B A B = a b A = a B = b A = b B = a
21 or2expropbilem1 A X B X A = a B = b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
22 21 3adant3 A X B X A R B A = a B = b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
23 22 adantl X V R Or X A X B X A R B A = a B = b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
24 breq12 B = a A = b B R A a R b
25 24 ancoms A = b B = a B R A a R b
26 25 adantl X V R Or X A X B X A R B A = b B = a B R A a R b
27 soasym R Or X A X B X A R B ¬ B R A
28 27 ex R Or X A X B X A R B ¬ B R A
29 28 adantl X V R Or X A X B X A R B ¬ B R A
30 29 expd X V R Or X A X B X A R B ¬ B R A
31 30 3imp2 X V R Or X A X B X A R B ¬ B R A
32 31 pm2.21d X V R Or X A X B X A R B B R A φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
33 32 adantr X V R Or X A X B X A R B A = b B = a B R A φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
34 26 33 sylbird X V R Or X A X B X A R B A = b B = a a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
35 34 impd X V R Or X A X B X A R B A = b B = a a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
36 35 ex X V R Or X A X B X A R B A = b B = a a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
37 23 36 jaod X V R Or X A X B X A R B A = a B = b A = b B = a a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
38 20 37 sylbid X V R Or X A X B X A R B A B = a b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
39 38 impd X V R Or X A X B X A R B A B = a b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
40 9 14 39 exlimd X V R Or X A X B X A R B b A B = a b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
41 1 8 40 exlimd X V R Or X A X B X A R B a b A B = a b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
42 or2expropbilem2 a b A B = a b a R b φ x y A B = x y [˙y / b]˙ [˙x / a]˙ a R b φ
43 41 42 syl6ibr X V R Or X A X B X A R B a b A B = a b a R b φ a b A B = a b a R b φ
44 oppr A X B X A B = a b A B = a b
45 44 anim1d A X B X A B = a b a R b φ A B = a b a R b φ
46 45 2eximdv A X B X a b A B = a b a R b φ a b A B = a b a R b φ
47 46 3adant3 A X B X A R B a b A B = a b a R b φ a b A B = a b a R b φ
48 47 adantl X V R Or X A X B X A R B a b A B = a b a R b φ a b A B = a b a R b φ
49 43 48 impbid X V R Or X A X B X A R B a b A B = a b a R b φ a b A B = a b a R b φ