| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑎 ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) ) | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑎 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉 | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑎 𝑦 | 
						
							| 4 |  | nfsbc1v | ⊢ Ⅎ 𝑎 [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) | 
						
							| 5 | 3 4 | nfsbcw | ⊢ Ⅎ 𝑎 [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) | 
						
							| 6 | 2 5 | nfan | ⊢ Ⅎ 𝑎 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) | 
						
							| 7 | 6 | nfex | ⊢ Ⅎ 𝑎 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) | 
						
							| 8 | 7 | nfex | ⊢ Ⅎ 𝑎 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑏 ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑏 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉 | 
						
							| 11 |  | nfsbc1v | ⊢ Ⅎ 𝑏 [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) | 
						
							| 12 | 10 11 | nfan | ⊢ Ⅎ 𝑏 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) | 
						
							| 13 | 12 | nfex | ⊢ Ⅎ 𝑏 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) | 
						
							| 14 | 13 | nfex | ⊢ Ⅎ 𝑏 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) | 
						
							| 15 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 16 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 17 |  | preq12bg | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑎  ∈  V  ∧  𝑏  ∈  V ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  ∨  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) ) ) ) | 
						
							| 18 | 15 16 17 | mpanr12 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  ∨  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) ) ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  ∨  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  ∨  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) ) ) ) | 
						
							| 21 |  | or2expropbilem1 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  →  ( ( 𝑎 𝑅 𝑏  ∧  𝜑 )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 )  →  ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  →  ( ( 𝑎 𝑅 𝑏  ∧  𝜑 )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  →  ( ( 𝑎 𝑅 𝑏  ∧  𝜑 )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 24 |  | breq12 | ⊢ ( ( 𝐵  =  𝑎  ∧  𝐴  =  𝑏 )  →  ( 𝐵 𝑅 𝐴  ↔  𝑎 𝑅 𝑏 ) ) | 
						
							| 25 | 24 | ancoms | ⊢ ( ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 )  →  ( 𝐵 𝑅 𝐴  ↔  𝑎 𝑅 𝑏 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  ∧  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) )  →  ( 𝐵 𝑅 𝐴  ↔  𝑎 𝑅 𝑏 ) ) | 
						
							| 27 |  | soasym | ⊢ ( ( 𝑅  Or  𝑋  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝑅 𝐵  →  ¬  𝐵 𝑅 𝐴 ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝑅  Or  𝑋  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝑅 𝐵  →  ¬  𝐵 𝑅 𝐴 ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝑅 𝐵  →  ¬  𝐵 𝑅 𝐴 ) ) ) | 
						
							| 30 | 29 | expd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  →  ( 𝐴  ∈  𝑋  →  ( 𝐵  ∈  𝑋  →  ( 𝐴 𝑅 𝐵  →  ¬  𝐵 𝑅 𝐴 ) ) ) ) | 
						
							| 31 | 30 | 3imp2 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ¬  𝐵 𝑅 𝐴 ) | 
						
							| 32 | 31 | pm2.21d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( 𝐵 𝑅 𝐴  →  ( 𝜑  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  ∧  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) )  →  ( 𝐵 𝑅 𝐴  →  ( 𝜑  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 34 | 26 33 | sylbird | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  ∧  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) )  →  ( 𝑎 𝑅 𝑏  →  ( 𝜑  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 35 | 34 | impd | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  ∧  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) )  →  ( ( 𝑎 𝑅 𝑏  ∧  𝜑 )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 )  →  ( ( 𝑎 𝑅 𝑏  ∧  𝜑 )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 37 | 23 36 | jaod | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ( ( 𝐴  =  𝑎  ∧  𝐵  =  𝑏 )  ∨  ( 𝐴  =  𝑏  ∧  𝐵  =  𝑎 ) )  →  ( ( 𝑎 𝑅 𝑏  ∧  𝜑 )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 38 | 20 37 | sylbid | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  →  ( ( 𝑎 𝑅 𝑏  ∧  𝜑 )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) ) | 
						
							| 39 | 38 | impd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 40 | 9 14 39 | exlimd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ∃ 𝑏 ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 41 | 1 8 40 | exlimd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ∃ 𝑎 ∃ 𝑏 ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 42 |  | or2expropbilem2 | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  ↔  ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑥 ,  𝑦 〉  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) | 
						
							| 43 | 41 42 | imbitrrdi | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ∃ 𝑎 ∃ 𝑏 ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 44 |  | oppr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 45 | 44 | anim1d | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 46 | 45 | 2eximdv | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ∃ 𝑎 ∃ 𝑏 ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 47 | 46 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 )  →  ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ∃ 𝑎 ∃ 𝑏 ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  →  ∃ 𝑎 ∃ 𝑏 ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) | 
						
							| 49 | 43 48 | impbid | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑅  Or  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴 𝑅 𝐵 ) )  →  ( ∃ 𝑎 ∃ 𝑏 ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) )  ↔  ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 ,  𝐵 〉  =  〈 𝑎 ,  𝑏 〉  ∧  ( 𝑎 𝑅 𝑏  ∧  𝜑 ) ) ) ) |