Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑎 ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑎 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 |
3 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑦 |
4 |
|
nfsbc1v |
⊢ Ⅎ 𝑎 [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) |
5 |
3 4
|
nfsbcw |
⊢ Ⅎ 𝑎 [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) |
6 |
2 5
|
nfan |
⊢ Ⅎ 𝑎 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) |
7 |
6
|
nfex |
⊢ Ⅎ 𝑎 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) |
8 |
7
|
nfex |
⊢ Ⅎ 𝑎 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑏 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 |
11 |
|
nfsbc1v |
⊢ Ⅎ 𝑏 [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) |
12 |
10 11
|
nfan |
⊢ Ⅎ 𝑏 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) |
13 |
12
|
nfex |
⊢ Ⅎ 𝑏 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) |
14 |
13
|
nfex |
⊢ Ⅎ 𝑏 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) |
15 |
|
vex |
⊢ 𝑎 ∈ V |
16 |
|
vex |
⊢ 𝑏 ∈ V |
17 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) ∨ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) ) ) |
18 |
15 16 17
|
mpanr12 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) ∨ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) ) ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) ∨ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) ∨ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) ) ) |
21 |
|
or2expropbilem1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) → ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
24 |
|
breq12 |
⊢ ( ( 𝐵 = 𝑎 ∧ 𝐴 = 𝑏 ) → ( 𝐵 𝑅 𝐴 ↔ 𝑎 𝑅 𝑏 ) ) |
25 |
24
|
ancoms |
⊢ ( ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) → ( 𝐵 𝑅 𝐴 ↔ 𝑎 𝑅 𝑏 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) ∧ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) → ( 𝐵 𝑅 𝐴 ↔ 𝑎 𝑅 𝑏 ) ) |
27 |
|
soasym |
⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑅 𝐵 → ¬ 𝐵 𝑅 𝐴 ) ) |
28 |
27
|
ex |
⊢ ( 𝑅 Or 𝑋 → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 → ¬ 𝐵 𝑅 𝐴 ) ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 → ¬ 𝐵 𝑅 𝐴 ) ) ) |
30 |
29
|
expd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐴 𝑅 𝐵 → ¬ 𝐵 𝑅 𝐴 ) ) ) ) |
31 |
30
|
3imp2 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ¬ 𝐵 𝑅 𝐴 ) |
32 |
31
|
pm2.21d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( 𝐵 𝑅 𝐴 → ( 𝜑 → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) ∧ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) → ( 𝐵 𝑅 𝐴 → ( 𝜑 → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
34 |
26 33
|
sylbird |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) ∧ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) → ( 𝑎 𝑅 𝑏 → ( 𝜑 → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
35 |
34
|
impd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) ∧ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
36 |
35
|
ex |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
37 |
23 36
|
jaod |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ( ( 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ) ∨ ( 𝐴 = 𝑏 ∧ 𝐵 = 𝑎 ) ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
38 |
20 37
|
sylbid |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } → ( ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) ) |
39 |
38
|
impd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
40 |
9 14 39
|
exlimd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ∃ 𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
41 |
1 8 40
|
exlimd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ∃ 𝑎 ∃ 𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
42 |
|
or2expropbilem2 |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) |
43 |
41 42
|
syl6ibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ∃ 𝑎 ∃ 𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
44 |
|
oppr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
45 |
44
|
anim1d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
46 |
45
|
2eximdv |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ∃ 𝑎 ∃ 𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
47 |
46
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) → ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ∃ 𝑎 ∃ 𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) → ∃ 𝑎 ∃ 𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |
49 |
43 48
|
impbid |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 𝑅 𝐵 ) ) → ( ∃ 𝑎 ∃ 𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ↔ ∃ 𝑎 ∃ 𝑏 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 𝑅 𝑏 ∧ 𝜑 ) ) ) ) |