| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  |-  F/ x ( <. A , B >. = <. a , b >. /\ ph ) | 
						
							| 2 |  | nfv |  |-  F/ y ( <. A , B >. = <. a , b >. /\ ph ) | 
						
							| 3 |  | nfv |  |-  F/ a <. A , B >. = <. x , y >. | 
						
							| 4 |  | nfcv |  |-  F/_ a y | 
						
							| 5 |  | nfsbc1v |  |-  F/ a [. x / a ]. ph | 
						
							| 6 | 4 5 | nfsbcw |  |-  F/ a [. y / b ]. [. x / a ]. ph | 
						
							| 7 | 3 6 | nfan |  |-  F/ a ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 8 |  | nfv |  |-  F/ b <. A , B >. = <. x , y >. | 
						
							| 9 |  | nfsbc1v |  |-  F/ b [. y / b ]. [. x / a ]. ph | 
						
							| 10 | 8 9 | nfan |  |-  F/ b ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 11 |  | opeq12 |  |-  ( ( a = x /\ b = y ) -> <. a , b >. = <. x , y >. ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( ( a = x /\ b = y ) -> ( <. A , B >. = <. a , b >. <-> <. A , B >. = <. x , y >. ) ) | 
						
							| 13 |  | sbceq1a |  |-  ( a = x -> ( ph <-> [. x / a ]. ph ) ) | 
						
							| 14 |  | sbceq1a |  |-  ( b = y -> ( [. x / a ]. ph <-> [. y / b ]. [. x / a ]. ph ) ) | 
						
							| 15 | 13 14 | sylan9bb |  |-  ( ( a = x /\ b = y ) -> ( ph <-> [. y / b ]. [. x / a ]. ph ) ) | 
						
							| 16 | 12 15 | anbi12d |  |-  ( ( a = x /\ b = y ) -> ( ( <. A , B >. = <. a , b >. /\ ph ) <-> ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) | 
						
							| 17 | 1 2 7 10 16 | cbvex2v |  |-  ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) <-> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) |