| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  |-  F/ a A e. X | 
						
							| 2 |  | nfv |  |-  F/ a B e. X | 
						
							| 3 |  | nfich1 |  |-  F/ a [ a <> b ] ph | 
						
							| 4 | 1 2 3 | nf3an |  |-  F/ a ( A e. X /\ B e. X /\ [ a <> b ] ph ) | 
						
							| 5 |  | nfv |  |-  F/ a <. A , B >. = <. x , y >. | 
						
							| 6 |  | nfcv |  |-  F/_ a y | 
						
							| 7 |  | nfsbc1v |  |-  F/ a [. x / a ]. ph | 
						
							| 8 | 6 7 | nfsbcw |  |-  F/ a [. y / b ]. [. x / a ]. ph | 
						
							| 9 | 5 8 | nfan |  |-  F/ a ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 10 | 9 | nfex |  |-  F/ a E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 11 | 10 | nfex |  |-  F/ a E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 12 |  | nfv |  |-  F/ b A e. X | 
						
							| 13 |  | nfv |  |-  F/ b B e. X | 
						
							| 14 |  | nfich2 |  |-  F/ b [ a <> b ] ph | 
						
							| 15 | 12 13 14 | nf3an |  |-  F/ b ( A e. X /\ B e. X /\ [ a <> b ] ph ) | 
						
							| 16 |  | nfv |  |-  F/ b <. A , B >. = <. x , y >. | 
						
							| 17 |  | nfsbc1v |  |-  F/ b [. y / b ]. [. x / a ]. ph | 
						
							| 18 | 16 17 | nfan |  |-  F/ b ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 19 | 18 | nfex |  |-  F/ b E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 20 | 19 | nfex |  |-  F/ b E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) | 
						
							| 21 |  | vex |  |-  a e. _V | 
						
							| 22 |  | vex |  |-  b e. _V | 
						
							| 23 |  | preq12bg |  |-  ( ( ( A e. X /\ B e. X ) /\ ( a e. _V /\ b e. _V ) ) -> ( { A , B } = { a , b } <-> ( ( A = a /\ B = b ) \/ ( A = b /\ B = a ) ) ) ) | 
						
							| 24 | 21 22 23 | mpanr12 |  |-  ( ( A e. X /\ B e. X ) -> ( { A , B } = { a , b } <-> ( ( A = a /\ B = b ) \/ ( A = b /\ B = a ) ) ) ) | 
						
							| 25 | 24 | 3adant3 |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( { A , B } = { a , b } <-> ( ( A = a /\ B = b ) \/ ( A = b /\ B = a ) ) ) ) | 
						
							| 26 |  | or2expropbilem1 |  |-  ( ( A e. X /\ B e. X ) -> ( ( A = a /\ B = b ) -> ( ph -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( ( A = a /\ B = b ) -> ( ph -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) | 
						
							| 28 |  | ichcom |  |-  ( [ a <> b ] ph <-> [ b <> a ] ph ) | 
						
							| 29 | 28 | biimpi |  |-  ( [ a <> b ] ph -> [ b <> a ] ph ) | 
						
							| 30 | 29 | 3ad2ant3 |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> [ b <> a ] ph ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) /\ ph ) -> [ b <> a ] ph ) | 
						
							| 32 | 22 21 | pm3.2i |  |-  ( b e. _V /\ a e. _V ) | 
						
							| 33 | 32 | a1i |  |-  ( ( A = b /\ B = a ) -> ( b e. _V /\ a e. _V ) ) | 
						
							| 34 | 31 33 | anim12i |  |-  ( ( ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) /\ ph ) /\ ( A = b /\ B = a ) ) -> ( [ b <> a ] ph /\ ( b e. _V /\ a e. _V ) ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) /\ ph ) -> ph ) | 
						
							| 36 |  | opeq12 |  |-  ( ( A = b /\ B = a ) -> <. A , B >. = <. b , a >. ) | 
						
							| 37 | 35 36 | anim12ci |  |-  ( ( ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) /\ ph ) /\ ( A = b /\ B = a ) ) -> ( <. A , B >. = <. b , a >. /\ ph ) ) | 
						
							| 38 |  | nfv |  |-  F/ x ( <. A , B >. = <. b , a >. /\ ph ) | 
						
							| 39 |  | nfv |  |-  F/ y ( <. A , B >. = <. b , a >. /\ ph ) | 
						
							| 40 |  | opeq12 |  |-  ( ( x = b /\ y = a ) -> <. x , y >. = <. b , a >. ) | 
						
							| 41 | 40 | eqeq2d |  |-  ( ( x = b /\ y = a ) -> ( <. A , B >. = <. x , y >. <-> <. A , B >. = <. b , a >. ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( [ b <> a ] ph /\ ( x = b /\ y = a ) ) -> ( <. A , B >. = <. x , y >. <-> <. A , B >. = <. b , a >. ) ) | 
						
							| 43 |  | dfsbcq |  |-  ( y = a -> ( [. y / b ]. [. x / a ]. ph <-> [. a / b ]. [. x / a ]. ph ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( x = b /\ y = a ) -> ( [. y / b ]. [. x / a ]. ph <-> [. a / b ]. [. x / a ]. ph ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( [ b <> a ] ph /\ ( x = b /\ y = a ) ) -> ( [. y / b ]. [. x / a ]. ph <-> [. a / b ]. [. x / a ]. ph ) ) | 
						
							| 46 |  | sbceq1a |  |-  ( x = b -> ( [. a / b ]. [. x / a ]. ph <-> [. b / x ]. [. a / b ]. [. x / a ]. ph ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( x = b /\ y = a ) -> ( [. a / b ]. [. x / a ]. ph <-> [. b / x ]. [. a / b ]. [. x / a ]. ph ) ) | 
						
							| 48 |  | df-ich |  |-  ( [ b <> a ] ph <-> A. b A. a ( [ b / x ] [ a / b ] [ x / a ] ph <-> ph ) ) | 
						
							| 49 |  | sbsbc |  |-  ( [ b / x ] [ a / b ] [ x / a ] ph <-> [. b / x ]. [ a / b ] [ x / a ] ph ) | 
						
							| 50 |  | sbsbc |  |-  ( [ a / b ] [ x / a ] ph <-> [. a / b ]. [ x / a ] ph ) | 
						
							| 51 |  | sbsbc |  |-  ( [ x / a ] ph <-> [. x / a ]. ph ) | 
						
							| 52 | 51 | sbcbii |  |-  ( [. a / b ]. [ x / a ] ph <-> [. a / b ]. [. x / a ]. ph ) | 
						
							| 53 | 50 52 | bitri |  |-  ( [ a / b ] [ x / a ] ph <-> [. a / b ]. [. x / a ]. ph ) | 
						
							| 54 | 53 | sbcbii |  |-  ( [. b / x ]. [ a / b ] [ x / a ] ph <-> [. b / x ]. [. a / b ]. [. x / a ]. ph ) | 
						
							| 55 | 49 54 | bitri |  |-  ( [ b / x ] [ a / b ] [ x / a ] ph <-> [. b / x ]. [. a / b ]. [. x / a ]. ph ) | 
						
							| 56 |  | 2sp |  |-  ( A. b A. a ( [ b / x ] [ a / b ] [ x / a ] ph <-> ph ) -> ( [ b / x ] [ a / b ] [ x / a ] ph <-> ph ) ) | 
						
							| 57 | 55 56 | bitr3id |  |-  ( A. b A. a ( [ b / x ] [ a / b ] [ x / a ] ph <-> ph ) -> ( [. b / x ]. [. a / b ]. [. x / a ]. ph <-> ph ) ) | 
						
							| 58 | 48 57 | sylbi |  |-  ( [ b <> a ] ph -> ( [. b / x ]. [. a / b ]. [. x / a ]. ph <-> ph ) ) | 
						
							| 59 | 47 58 | sylan9bbr |  |-  ( ( [ b <> a ] ph /\ ( x = b /\ y = a ) ) -> ( [. a / b ]. [. x / a ]. ph <-> ph ) ) | 
						
							| 60 | 45 59 | bitrd |  |-  ( ( [ b <> a ] ph /\ ( x = b /\ y = a ) ) -> ( [. y / b ]. [. x / a ]. ph <-> ph ) ) | 
						
							| 61 | 42 60 | anbi12d |  |-  ( ( [ b <> a ] ph /\ ( x = b /\ y = a ) ) -> ( ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) <-> ( <. A , B >. = <. b , a >. /\ ph ) ) ) | 
						
							| 62 | 38 39 61 | spc2ed |  |-  ( ( [ b <> a ] ph /\ ( b e. _V /\ a e. _V ) ) -> ( ( <. A , B >. = <. b , a >. /\ ph ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) | 
						
							| 63 | 34 37 62 | sylc |  |-  ( ( ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) /\ ph ) /\ ( A = b /\ B = a ) ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) | 
						
							| 64 | 63 | exp31 |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( ph -> ( ( A = b /\ B = a ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) | 
						
							| 65 | 64 | com23 |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( ( A = b /\ B = a ) -> ( ph -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) | 
						
							| 66 | 27 65 | jaod |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( ( ( A = a /\ B = b ) \/ ( A = b /\ B = a ) ) -> ( ph -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) | 
						
							| 67 | 25 66 | sylbid |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( { A , B } = { a , b } -> ( ph -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) ) | 
						
							| 68 | 67 | impd |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( ( { A , B } = { a , b } /\ ph ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) | 
						
							| 69 | 15 20 68 | exlimd |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( E. b ( { A , B } = { a , b } /\ ph ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) | 
						
							| 70 | 4 11 69 | exlimd |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( E. a E. b ( { A , B } = { a , b } /\ ph ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) ) | 
						
							| 71 |  | or2expropbilem2 |  |-  ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) <-> E. x E. y ( <. A , B >. = <. x , y >. /\ [. y / b ]. [. x / a ]. ph ) ) | 
						
							| 72 | 70 71 | imbitrrdi |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( E. a E. b ( { A , B } = { a , b } /\ ph ) -> E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) ) ) | 
						
							| 73 |  | oppr |  |-  ( ( A e. X /\ B e. X ) -> ( <. A , B >. = <. a , b >. -> { A , B } = { a , b } ) ) | 
						
							| 74 | 73 | anim1d |  |-  ( ( A e. X /\ B e. X ) -> ( ( <. A , B >. = <. a , b >. /\ ph ) -> ( { A , B } = { a , b } /\ ph ) ) ) | 
						
							| 75 | 74 | 2eximdv |  |-  ( ( A e. X /\ B e. X ) -> ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) -> E. a E. b ( { A , B } = { a , b } /\ ph ) ) ) | 
						
							| 76 | 75 | 3adant3 |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) -> E. a E. b ( { A , B } = { a , b } /\ ph ) ) ) | 
						
							| 77 | 72 76 | impbid |  |-  ( ( A e. X /\ B e. X /\ [ a <> b ] ph ) -> ( E. a E. b ( { A , B } = { a , b } /\ ph ) <-> E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) ) ) |