| Step | Hyp | Ref | Expression | 
						
							| 1 |  | notnotb |  |-  ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) <-> -. -. E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) ) | 
						
							| 2 |  | nfv |  |-  F/ c ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) | 
						
							| 3 |  | nfv |  |-  F/ d ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) | 
						
							| 4 |  | nfv |  |-  F/ a <. x , y >. = <. c , d >. | 
						
							| 5 |  | nfv |  |-  F/ a c =/= d | 
						
							| 6 |  | nfsbc1v |  |-  F/ a [. c / a ]. [. d / b ]. ph | 
						
							| 7 | 4 5 6 | nf3an |  |-  F/ a ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) | 
						
							| 8 |  | nfv |  |-  F/ b <. x , y >. = <. c , d >. | 
						
							| 9 |  | nfv |  |-  F/ b c =/= d | 
						
							| 10 |  | nfcv |  |-  F/_ b c | 
						
							| 11 |  | nfsbc1v |  |-  F/ b [. d / b ]. ph | 
						
							| 12 | 10 11 | nfsbcw |  |-  F/ b [. c / a ]. [. d / b ]. ph | 
						
							| 13 | 8 9 12 | nf3an |  |-  F/ b ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) | 
						
							| 14 |  | opeq12 |  |-  ( ( a = c /\ b = d ) -> <. a , b >. = <. c , d >. ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( a = c /\ b = d ) -> ( <. x , y >. = <. a , b >. <-> <. x , y >. = <. c , d >. ) ) | 
						
							| 16 |  | simpl |  |-  ( ( a = c /\ b = d ) -> a = c ) | 
						
							| 17 |  | simpr |  |-  ( ( a = c /\ b = d ) -> b = d ) | 
						
							| 18 | 16 17 | neeq12d |  |-  ( ( a = c /\ b = d ) -> ( a =/= b <-> c =/= d ) ) | 
						
							| 19 |  | sbceq1a |  |-  ( b = d -> ( ph <-> [. d / b ]. ph ) ) | 
						
							| 20 |  | sbceq1a |  |-  ( a = c -> ( [. d / b ]. ph <-> [. c / a ]. [. d / b ]. ph ) ) | 
						
							| 21 | 19 20 | sylan9bbr |  |-  ( ( a = c /\ b = d ) -> ( ph <-> [. c / a ]. [. d / b ]. ph ) ) | 
						
							| 22 | 15 18 21 | 3anbi123d |  |-  ( ( a = c /\ b = d ) -> ( ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) <-> ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) ) | 
						
							| 23 | 2 3 7 13 22 | cbvex2v |  |-  ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) <-> E. c E. d ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) | 
						
							| 24 |  | vex |  |-  x e. _V | 
						
							| 25 |  | vex |  |-  y e. _V | 
						
							| 26 | 24 25 | opth |  |-  ( <. x , y >. = <. c , d >. <-> ( x = c /\ y = d ) ) | 
						
							| 27 |  | eleq1w |  |-  ( y = d -> ( y e. X <-> d e. X ) ) | 
						
							| 28 | 27 | biimpcd |  |-  ( y e. X -> ( y = d -> d e. X ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( x e. X /\ y e. X ) -> ( y = d -> d e. X ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( y = d -> d e. X ) ) | 
						
							| 31 | 30 | com12 |  |-  ( y = d -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> d e. X ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( x = c /\ y = d ) -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> d e. X ) ) | 
						
							| 33 | 26 32 | sylbi |  |-  ( <. x , y >. = <. c , d >. -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> d e. X ) ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> d e. X ) ) | 
						
							| 35 | 34 | impcom |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> d e. X ) | 
						
							| 36 |  | eleq1w |  |-  ( x = c -> ( x e. X <-> c e. X ) ) | 
						
							| 37 | 36 | biimpcd |  |-  ( x e. X -> ( x = c -> c e. X ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( x e. X /\ y e. X ) -> ( x = c -> c e. X ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( x = c -> c e. X ) ) | 
						
							| 40 | 39 | com12 |  |-  ( x = c -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> c e. X ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( x = c /\ y = d ) -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> c e. X ) ) | 
						
							| 42 | 26 41 | sylbi |  |-  ( <. x , y >. = <. c , d >. -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> c e. X ) ) | 
						
							| 43 | 42 | 3ad2ant1 |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> c e. X ) ) | 
						
							| 44 | 43 | impcom |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> c e. X ) | 
						
							| 45 |  | eqidd |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> <. d , c >. = <. d , c >. ) | 
						
							| 46 |  | necom |  |-  ( c =/= d <-> d =/= c ) | 
						
							| 47 | 46 | biimpi |  |-  ( c =/= d -> d =/= c ) | 
						
							| 48 | 47 | 3ad2ant2 |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) -> d =/= c ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> d =/= c ) | 
						
							| 50 |  | dfich2 |  |-  ( [ a <> b ] ph <-> A. c A. d ( [ c / a ] [ d / b ] ph <-> [ d / a ] [ c / b ] ph ) ) | 
						
							| 51 |  | 2sp |  |-  ( A. c A. d ( [ c / a ] [ d / b ] ph <-> [ d / a ] [ c / b ] ph ) -> ( [ c / a ] [ d / b ] ph <-> [ d / a ] [ c / b ] ph ) ) | 
						
							| 52 |  | sbsbc |  |-  ( [ d / b ] ph <-> [. d / b ]. ph ) | 
						
							| 53 | 52 | sbbii |  |-  ( [ c / a ] [ d / b ] ph <-> [ c / a ] [. d / b ]. ph ) | 
						
							| 54 |  | sbsbc |  |-  ( [ c / a ] [. d / b ]. ph <-> [. c / a ]. [. d / b ]. ph ) | 
						
							| 55 | 53 54 | bitri |  |-  ( [ c / a ] [ d / b ] ph <-> [. c / a ]. [. d / b ]. ph ) | 
						
							| 56 |  | sbsbc |  |-  ( [ c / b ] ph <-> [. c / b ]. ph ) | 
						
							| 57 | 56 | sbbii |  |-  ( [ d / a ] [ c / b ] ph <-> [ d / a ] [. c / b ]. ph ) | 
						
							| 58 |  | sbsbc |  |-  ( [ d / a ] [. c / b ]. ph <-> [. d / a ]. [. c / b ]. ph ) | 
						
							| 59 | 57 58 | bitri |  |-  ( [ d / a ] [ c / b ] ph <-> [. d / a ]. [. c / b ]. ph ) | 
						
							| 60 | 51 55 59 | 3bitr3g |  |-  ( A. c A. d ( [ c / a ] [ d / b ] ph <-> [ d / a ] [ c / b ] ph ) -> ( [. c / a ]. [. d / b ]. ph <-> [. d / a ]. [. c / b ]. ph ) ) | 
						
							| 61 | 60 | biimpd |  |-  ( A. c A. d ( [ c / a ] [ d / b ] ph <-> [ d / a ] [ c / b ] ph ) -> ( [. c / a ]. [. d / b ]. ph -> [. d / a ]. [. c / b ]. ph ) ) | 
						
							| 62 | 50 61 | sylbi |  |-  ( [ a <> b ] ph -> ( [. c / a ]. [. d / b ]. ph -> [. d / a ]. [. c / b ]. ph ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( [. c / a ]. [. d / b ]. ph -> [. d / a ]. [. c / b ]. ph ) ) | 
						
							| 64 | 63 | com12 |  |-  ( [. c / a ]. [. d / b ]. ph -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> [. d / a ]. [. c / b ]. ph ) ) | 
						
							| 65 | 64 | 3ad2ant3 |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) -> ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> [. d / a ]. [. c / b ]. ph ) ) | 
						
							| 66 | 65 | impcom |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> [. d / a ]. [. c / b ]. ph ) | 
						
							| 67 |  | sbccom |  |-  ( [. c / b ]. [. d / a ]. ph <-> [. d / a ]. [. c / b ]. ph ) | 
						
							| 68 | 66 67 | sylibr |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> [. c / b ]. [. d / a ]. ph ) | 
						
							| 69 | 45 49 68 | 3jca |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> ( <. d , c >. = <. d , c >. /\ d =/= c /\ [. c / b ]. [. d / a ]. ph ) ) | 
						
							| 70 |  | nfv |  |-  F/ b <. d , c >. = <. d , c >. | 
						
							| 71 |  | nfv |  |-  F/ b d =/= c | 
						
							| 72 |  | nfsbc1v |  |-  F/ b [. c / b ]. [. d / a ]. ph | 
						
							| 73 | 70 71 72 | nf3an |  |-  F/ b ( <. d , c >. = <. d , c >. /\ d =/= c /\ [. c / b ]. [. d / a ]. ph ) | 
						
							| 74 |  | opeq2 |  |-  ( b = c -> <. d , b >. = <. d , c >. ) | 
						
							| 75 | 74 | eqeq2d |  |-  ( b = c -> ( <. d , c >. = <. d , b >. <-> <. d , c >. = <. d , c >. ) ) | 
						
							| 76 |  | neeq2 |  |-  ( b = c -> ( d =/= b <-> d =/= c ) ) | 
						
							| 77 |  | sbceq1a |  |-  ( b = c -> ( [. d / a ]. ph <-> [. c / b ]. [. d / a ]. ph ) ) | 
						
							| 78 | 75 76 77 | 3anbi123d |  |-  ( b = c -> ( ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) <-> ( <. d , c >. = <. d , c >. /\ d =/= c /\ [. c / b ]. [. d / a ]. ph ) ) ) | 
						
							| 79 | 10 73 78 | spcegf |  |-  ( c e. X -> ( ( <. d , c >. = <. d , c >. /\ d =/= c /\ [. c / b ]. [. d / a ]. ph ) -> E. b ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) ) ) | 
						
							| 80 | 44 69 79 | sylc |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> E. b ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) ) | 
						
							| 81 |  | nfcv |  |-  F/_ a d | 
						
							| 82 |  | nfv |  |-  F/ a <. d , c >. = <. d , b >. | 
						
							| 83 |  | nfv |  |-  F/ a d =/= b | 
						
							| 84 |  | nfsbc1v |  |-  F/ a [. d / a ]. ph | 
						
							| 85 | 82 83 84 | nf3an |  |-  F/ a ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) | 
						
							| 86 | 85 | nfex |  |-  F/ a E. b ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) | 
						
							| 87 |  | opeq1 |  |-  ( a = d -> <. a , b >. = <. d , b >. ) | 
						
							| 88 | 87 | eqeq2d |  |-  ( a = d -> ( <. d , c >. = <. a , b >. <-> <. d , c >. = <. d , b >. ) ) | 
						
							| 89 |  | neeq1 |  |-  ( a = d -> ( a =/= b <-> d =/= b ) ) | 
						
							| 90 |  | sbceq1a |  |-  ( a = d -> ( ph <-> [. d / a ]. ph ) ) | 
						
							| 91 | 88 89 90 | 3anbi123d |  |-  ( a = d -> ( ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) <-> ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) ) ) | 
						
							| 92 | 91 | exbidv |  |-  ( a = d -> ( E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) <-> E. b ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) ) ) | 
						
							| 93 | 81 86 92 | spcegf |  |-  ( d e. X -> ( E. b ( <. d , c >. = <. d , b >. /\ d =/= b /\ [. d / a ]. ph ) -> E. a E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 94 | 35 80 93 | sylc |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> E. a E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) ) | 
						
							| 95 |  | vex |  |-  d e. _V | 
						
							| 96 |  | vex |  |-  c e. _V | 
						
							| 97 | 95 96 | opth1 |  |-  ( <. d , c >. = <. c , d >. -> d = c ) | 
						
							| 98 | 97 | equcomd |  |-  ( <. d , c >. = <. c , d >. -> c = d ) | 
						
							| 99 | 98 | necon3ai |  |-  ( c =/= d -> -. <. d , c >. = <. c , d >. ) | 
						
							| 100 | 99 | adantl |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d ) -> -. <. d , c >. = <. c , d >. ) | 
						
							| 101 |  | eqeq2 |  |-  ( <. x , y >. = <. c , d >. -> ( <. d , c >. = <. x , y >. <-> <. d , c >. = <. c , d >. ) ) | 
						
							| 102 | 101 | adantr |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d ) -> ( <. d , c >. = <. x , y >. <-> <. d , c >. = <. c , d >. ) ) | 
						
							| 103 | 100 102 | mtbird |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d ) -> -. <. d , c >. = <. x , y >. ) | 
						
							| 104 | 103 | 3adant3 |  |-  ( ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) -> -. <. d , c >. = <. x , y >. ) | 
						
							| 105 | 104 | adantl |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> -. <. d , c >. = <. x , y >. ) | 
						
							| 106 | 94 105 | jcnd |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> -. ( E. a E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , c >. = <. x , y >. ) ) | 
						
							| 107 |  | opeq1 |  |-  ( v = d -> <. v , w >. = <. d , w >. ) | 
						
							| 108 | 107 | eqeq1d |  |-  ( v = d -> ( <. v , w >. = <. a , b >. <-> <. d , w >. = <. a , b >. ) ) | 
						
							| 109 | 108 | 3anbi1d |  |-  ( v = d -> ( ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) <-> ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 110 | 109 | 2exbidv |  |-  ( v = d -> ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) <-> E. a E. b ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 111 | 107 | eqeq1d |  |-  ( v = d -> ( <. v , w >. = <. x , y >. <-> <. d , w >. = <. x , y >. ) ) | 
						
							| 112 | 110 111 | imbi12d |  |-  ( v = d -> ( ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) <-> ( E. a E. b ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , w >. = <. x , y >. ) ) ) | 
						
							| 113 | 112 | notbid |  |-  ( v = d -> ( -. ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) <-> -. ( E. a E. b ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , w >. = <. x , y >. ) ) ) | 
						
							| 114 |  | opeq2 |  |-  ( w = c -> <. d , w >. = <. d , c >. ) | 
						
							| 115 | 114 | eqeq1d |  |-  ( w = c -> ( <. d , w >. = <. a , b >. <-> <. d , c >. = <. a , b >. ) ) | 
						
							| 116 | 115 | 3anbi1d |  |-  ( w = c -> ( ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) <-> ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 117 | 116 | 2exbidv |  |-  ( w = c -> ( E. a E. b ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) <-> E. a E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 118 | 114 | eqeq1d |  |-  ( w = c -> ( <. d , w >. = <. x , y >. <-> <. d , c >. = <. x , y >. ) ) | 
						
							| 119 | 117 118 | imbi12d |  |-  ( w = c -> ( ( E. a E. b ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , w >. = <. x , y >. ) <-> ( E. a E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , c >. = <. x , y >. ) ) ) | 
						
							| 120 | 119 | notbid |  |-  ( w = c -> ( -. ( E. a E. b ( <. d , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , w >. = <. x , y >. ) <-> -. ( E. a E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , c >. = <. x , y >. ) ) ) | 
						
							| 121 | 113 120 | rspc2ev |  |-  ( ( d e. X /\ c e. X /\ -. ( E. a E. b ( <. d , c >. = <. a , b >. /\ a =/= b /\ ph ) -> <. d , c >. = <. x , y >. ) ) -> E. v e. X E. w e. X -. ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) | 
						
							| 122 | 35 44 106 121 | syl3anc |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> E. v e. X E. w e. X -. ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) | 
						
							| 123 |  | rexnal2 |  |-  ( E. v e. X E. w e. X -. ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) <-> -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) | 
						
							| 124 | 122 123 | sylib |  |-  ( ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) /\ ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) ) -> -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) | 
						
							| 125 | 124 | ex |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) -> -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 126 | 125 | exlimdvv |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( E. c E. d ( <. x , y >. = <. c , d >. /\ c =/= d /\ [. c / a ]. [. d / b ]. ph ) -> -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 127 | 23 126 | biimtrid |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) -> -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 128 | 1 127 | biimtrrid |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( -. -. E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) -> -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 129 | 128 | orrd |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> ( -. E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) \/ -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 130 |  | ianor |  |-  ( -. ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) <-> ( -. E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) \/ -. A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 131 | 129 130 | sylibr |  |-  ( ( [ a <> b ] ph /\ ( x e. X /\ y e. X ) ) -> -. ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 132 | 131 | ralrimivva |  |-  ( [ a <> b ] ph -> A. x e. X A. y e. X -. ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 133 |  | ralnex2 |  |-  ( A. x e. X A. y e. X -. ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) <-> -. E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 134 | 132 133 | sylib |  |-  ( [ a <> b ] ph -> -. E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 135 |  | eqeq1 |  |-  ( p = <. x , y >. -> ( p = <. a , b >. <-> <. x , y >. = <. a , b >. ) ) | 
						
							| 136 | 135 | 3anbi1d |  |-  ( p = <. x , y >. -> ( ( p = <. a , b >. /\ a =/= b /\ ph ) <-> ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 137 | 136 | 2exbidv |  |-  ( p = <. x , y >. -> ( E. a E. b ( p = <. a , b >. /\ a =/= b /\ ph ) <-> E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 138 |  | eqeq1 |  |-  ( p = <. v , w >. -> ( p = <. a , b >. <-> <. v , w >. = <. a , b >. ) ) | 
						
							| 139 | 138 | 3anbi1d |  |-  ( p = <. v , w >. -> ( ( p = <. a , b >. /\ a =/= b /\ ph ) <-> ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 140 | 139 | 2exbidv |  |-  ( p = <. v , w >. -> ( E. a E. b ( p = <. a , b >. /\ a =/= b /\ ph ) <-> E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) ) ) | 
						
							| 141 | 137 140 | reuop |  |-  ( E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ a =/= b /\ ph ) <-> E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ a =/= b /\ ph ) /\ A. v e. X A. w e. X ( E. a E. b ( <. v , w >. = <. a , b >. /\ a =/= b /\ ph ) -> <. v , w >. = <. x , y >. ) ) ) | 
						
							| 142 | 134 141 | sylnibr |  |-  ( [ a <> b ] ph -> -. E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ a =/= b /\ ph ) ) |