Step |
Hyp |
Ref |
Expression |
1 |
|
df-ich |
|- ( [ x <> y ] ph <-> A. x A. y ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) ) |
2 |
|
nfs1v |
|- F/ y [ b / y ] ph |
3 |
2
|
nfsbv |
|- F/ y [ a / x ] [ b / y ] ph |
4 |
3
|
nfsbv |
|- F/ y [ x / b ] [ a / x ] [ b / y ] ph |
5 |
|
nfv |
|- F/ a ph |
6 |
4 5
|
sbbib |
|- ( A. y ( [ y / a ] [ x / b ] [ a / x ] [ b / y ] ph <-> ph ) <-> A. a ( [ x / b ] [ a / x ] [ b / y ] ph <-> [ a / y ] ph ) ) |
7 |
6
|
albii |
|- ( A. x A. y ( [ y / a ] [ x / b ] [ a / x ] [ b / y ] ph <-> ph ) <-> A. x A. a ( [ x / b ] [ a / x ] [ b / y ] ph <-> [ a / y ] ph ) ) |
8 |
|
sbco4 |
|- ( [ y / a ] [ x / b ] [ a / x ] [ b / y ] ph <-> [ x / z ] [ y / x ] [ z / y ] ph ) |
9 |
8
|
bibi1i |
|- ( ( [ y / a ] [ x / b ] [ a / x ] [ b / y ] ph <-> ph ) <-> ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) ) |
10 |
9
|
2albii |
|- ( A. x A. y ( [ y / a ] [ x / b ] [ a / x ] [ b / y ] ph <-> ph ) <-> A. x A. y ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) ) |
11 |
|
alcom |
|- ( A. x A. a ( [ x / b ] [ a / x ] [ b / y ] ph <-> [ a / y ] ph ) <-> A. a A. x ( [ x / b ] [ a / x ] [ b / y ] ph <-> [ a / y ] ph ) ) |
12 |
|
nfs1v |
|- F/ x [ a / x ] [ b / y ] ph |
13 |
|
nfv |
|- F/ b [ a / y ] ph |
14 |
12 13
|
sbbib |
|- ( A. x ( [ x / b ] [ a / x ] [ b / y ] ph <-> [ a / y ] ph ) <-> A. b ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) ) |
15 |
14
|
albii |
|- ( A. a A. x ( [ x / b ] [ a / x ] [ b / y ] ph <-> [ a / y ] ph ) <-> A. a A. b ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) ) |
16 |
11 15
|
bitri |
|- ( A. x A. a ( [ x / b ] [ a / x ] [ b / y ] ph <-> [ a / y ] ph ) <-> A. a A. b ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) ) |
17 |
7 10 16
|
3bitr3i |
|- ( A. x A. y ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) <-> A. a A. b ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) ) |
18 |
1 17
|
bitri |
|- ( [ x <> y ] ph <-> A. a A. b ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) ) |