Metamath Proof Explorer


Theorem dfich2

Description: Alternate definition of the propery of a wff ph that the setvar variables x and y are interchangeable. (Contributed by AV and WL, 6-Aug-2023)

Ref Expression
Assertion dfich2 xyφabaxbyφbxayφ

Proof

Step Hyp Ref Expression
1 df-ich xyφxyxzyxzyφφ
2 nfs1v ybyφ
3 2 nfsbv yaxbyφ
4 3 nfsbv yxbaxbyφ
5 nfv aφ
6 4 5 sbbib yyaxbaxbyφφaxbaxbyφayφ
7 6 albii xyyaxbaxbyφφxaxbaxbyφayφ
8 sbco4 yaxbaxbyφxzyxzyφ
9 8 bibi1i yaxbaxbyφφxzyxzyφφ
10 9 2albii xyyaxbaxbyφφxyxzyxzyφφ
11 alcom xaxbaxbyφayφaxxbaxbyφayφ
12 nfs1v xaxbyφ
13 nfv bayφ
14 12 13 sbbib xxbaxbyφayφbaxbyφbxayφ
15 14 albii axxbaxbyφayφabaxbyφbxayφ
16 11 15 bitri xaxbaxbyφayφabaxbyφbxayφ
17 7 10 16 3bitr3i xyxzyxzyφφabaxbyφbxayφ
18 1 17 bitri xyφabaxbyφbxayφ