Metamath Proof Explorer


Theorem sbco4

Description: Two ways of exchanging two variables. Both sides of the biconditional exchange x and y , either via two temporary variables u and v , or a single temporary w . (Contributed by Jim Kingdon, 25-Sep-2018)

Ref Expression
Assertion sbco4 yuxvuxvyφxwyxwyφ

Proof

Step Hyp Ref Expression
1 sbcom2 xvyuuxvyφyuxvuxvyφ
2 sbco2vv yuuxvyφyxvyφ
3 2 sbbii xvyuuxvyφxvyxvyφ
4 1 3 bitr3i yuxvuxvyφxvyxvyφ
5 sbco4lem xvyxvyφxtyxtyφ
6 sbco4lem xtyxtyφxwyxwyφ
7 4 5 6 3bitri yuxvuxvyφxwyxwyφ