| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ich |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 2 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑏 / 𝑦 ] 𝜑 |
| 3 |
2
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 |
| 4 |
3
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 |
| 5 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
| 6 |
4 5
|
sbbib |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑎 ] [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ 𝜑 ) ↔ ∀ 𝑎 ( [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ) |
| 7 |
6
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( [ 𝑦 / 𝑎 ] [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑎 ( [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ) |
| 8 |
|
sbco4 |
⊢ ( [ 𝑦 / 𝑎 ] [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
| 9 |
8
|
bibi1i |
⊢ ( ( [ 𝑦 / 𝑎 ] [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ 𝜑 ) ↔ ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 10 |
9
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( [ 𝑦 / 𝑎 ] [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 11 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑎 ( [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑎 ∀ 𝑥 ( [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ) |
| 12 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 |
| 13 |
|
nfv |
⊢ Ⅎ 𝑏 [ 𝑎 / 𝑦 ] 𝜑 |
| 14 |
12 13
|
sbbib |
⊢ ( ∀ 𝑥 ( [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) ) |
| 15 |
14
|
albii |
⊢ ( ∀ 𝑎 ∀ 𝑥 ( [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) ) |
| 16 |
11 15
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑎 ( [ 𝑥 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) ) |
| 17 |
7 10 16
|
3bitr3i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜑 ) ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) ) |
| 18 |
1 17
|
bitri |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) ) |