Metamath Proof Explorer


Theorem ichcom

Description: The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023)

Ref Expression
Assertion ichcom ( [ 𝑥𝑦 ] 𝜓 ↔ [ 𝑦𝑥 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑏𝑎 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑎𝑏 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) )
2 sbcom2 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 )
3 sbcom2 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 )
4 2 3 bibi12i ( ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) )
5 4 2albii ( ∀ 𝑎𝑏 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑎𝑏 ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) )
6 1 5 bitri ( ∀ 𝑏𝑎 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑎𝑏 ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) )
7 dfich2 ( [ 𝑥𝑦 ] 𝜓 ↔ ∀ 𝑏𝑎 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) )
8 dfich2 ( [ 𝑦𝑥 ] 𝜓 ↔ ∀ 𝑎𝑏 ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) )
9 6 7 8 3bitr4i ( [ 𝑥𝑦 ] 𝜓 ↔ [ 𝑦𝑥 ] 𝜓 )