| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alcom |
⊢ ( ∀ 𝑏 ∀ 𝑎 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ) |
| 2 |
|
sbcom2 |
⊢ ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ) |
| 3 |
|
sbcom2 |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) |
| 4 |
2 3
|
bibi12i |
⊢ ( ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) ) |
| 5 |
4
|
2albii |
⊢ ( ∀ 𝑎 ∀ 𝑏 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) ) |
| 6 |
1 5
|
bitri |
⊢ ( ∀ 𝑏 ∀ 𝑎 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) ) |
| 7 |
|
dfich2 |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜓 ↔ ∀ 𝑏 ∀ 𝑎 ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) ) |
| 8 |
|
dfich2 |
⊢ ( [ 𝑦 ⇄ 𝑥 ] 𝜓 ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑦 ] [ 𝑏 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ) ) |
| 9 |
6 7 8
|
3bitr4i |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜓 ↔ [ 𝑦 ⇄ 𝑥 ] 𝜓 ) |