| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ichbi12i.1 | ⊢ ( ( 𝑥  =  𝑎  ∧  𝑦  =  𝑏 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑏 𝜓 | 
						
							| 3 | 2 | sbco2v | ⊢ ( [ 𝑣  /  𝑏 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑦 ] 𝜓 ) | 
						
							| 4 | 3 | bicomi | ⊢ ( [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑏 ] [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 5 | 4 | sbbii | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑎  /  𝑥 ] [ 𝑣  /  𝑏 ] [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 6 |  | sbcom2 | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑣  /  𝑏 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 8 | 7 | sbbii | ⊢ ( [ 𝑢  /  𝑎 ] [ 𝑎  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑢  /  𝑎 ] [ 𝑣  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑎 𝜓 | 
						
							| 10 | 9 | nfsbv | ⊢ Ⅎ 𝑎 [ 𝑣  /  𝑦 ] 𝜓 | 
						
							| 11 | 10 | sbco2v | ⊢ ( [ 𝑢  /  𝑎 ] [ 𝑎  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑢  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓 ) | 
						
							| 12 | 1 | 2sbievw | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  𝜒 ) | 
						
							| 13 | 12 | 2sbbii | ⊢ ( [ 𝑢  /  𝑎 ] [ 𝑣  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑢  /  𝑎 ] [ 𝑣  /  𝑏 ] 𝜒 ) | 
						
							| 14 | 8 11 13 | 3bitr3i | ⊢ ( [ 𝑢  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑢  /  𝑎 ] [ 𝑣  /  𝑏 ] 𝜒 ) | 
						
							| 15 |  | sbcom2 | ⊢ ( [ 𝑢  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑎  /  𝑥 ] [ 𝑢  /  𝑏 ] [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 16 | 2 | sbco2v | ⊢ ( [ 𝑢  /  𝑏 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑢  /  𝑦 ] 𝜓 ) | 
						
							| 17 | 16 | sbbii | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑢  /  𝑏 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑎  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 ) | 
						
							| 18 | 15 17 | bitri | ⊢ ( [ 𝑢  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑎  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 ) | 
						
							| 19 | 18 | sbbii | ⊢ ( [ 𝑣  /  𝑎 ] [ 𝑢  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑎 ] [ 𝑎  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 ) | 
						
							| 20 | 12 | 2sbbii | ⊢ ( [ 𝑣  /  𝑎 ] [ 𝑢  /  𝑏 ] [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑎 ] [ 𝑢  /  𝑏 ] 𝜒 ) | 
						
							| 21 | 9 | nfsbv | ⊢ Ⅎ 𝑎 [ 𝑢  /  𝑦 ] 𝜓 | 
						
							| 22 | 21 | sbco2v | ⊢ ( [ 𝑣  /  𝑎 ] [ 𝑎  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 ) | 
						
							| 23 | 19 20 22 | 3bitr3ri | ⊢ ( [ 𝑣  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑎 ] [ 𝑢  /  𝑏 ] 𝜒 ) | 
						
							| 24 | 14 23 | bibi12i | ⊢ ( ( [ 𝑢  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 )  ↔  ( [ 𝑢  /  𝑎 ] [ 𝑣  /  𝑏 ] 𝜒  ↔  [ 𝑣  /  𝑎 ] [ 𝑢  /  𝑏 ] 𝜒 ) ) | 
						
							| 25 | 24 | 2albii | ⊢ ( ∀ 𝑢 ∀ 𝑣 ( [ 𝑢  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 )  ↔  ∀ 𝑢 ∀ 𝑣 ( [ 𝑢  /  𝑎 ] [ 𝑣  /  𝑏 ] 𝜒  ↔  [ 𝑣  /  𝑎 ] [ 𝑢  /  𝑏 ] 𝜒 ) ) | 
						
							| 26 |  | dfich2 | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜓  ↔  ∀ 𝑢 ∀ 𝑣 ( [ 𝑢  /  𝑥 ] [ 𝑣  /  𝑦 ] 𝜓  ↔  [ 𝑣  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 ) ) | 
						
							| 27 |  | dfich2 | ⊢ ( [ 𝑎 ⇄ 𝑏 ] 𝜒  ↔  ∀ 𝑢 ∀ 𝑣 ( [ 𝑢  /  𝑎 ] [ 𝑣  /  𝑏 ] 𝜒  ↔  [ 𝑣  /  𝑎 ] [ 𝑢  /  𝑏 ] 𝜒 ) ) | 
						
							| 28 | 25 26 27 | 3bitr4i | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜓  ↔  [ 𝑎 ⇄ 𝑏 ] 𝜒 ) |