Metamath Proof Explorer


Theorem ichbi12i

Description: Equivalence for interchangeable setvar variables. (Contributed by AV, 29-Jul-2023)

Ref Expression
Hypothesis ichbi12i.1 ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( 𝜓𝜒 ) )
Assertion ichbi12i ( [ 𝑥𝑦 ] 𝜓 ↔ [ 𝑎𝑏 ] 𝜒 )

Proof

Step Hyp Ref Expression
1 ichbi12i.1 ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( 𝜓𝜒 ) )
2 nfv 𝑏 𝜓
3 2 sbco2v ( [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑦 ] 𝜓 )
4 3 bicomi ( [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 )
5 4 sbbii ( [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 )
6 sbcom2 ( [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 )
7 5 6 bitri ( [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 )
8 7 sbbii ( [ 𝑢 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 )
9 nfv 𝑎 𝜓
10 9 nfsbv 𝑎 [ 𝑣 / 𝑦 ] 𝜓
11 10 sbco2v ( [ 𝑢 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 )
12 1 2sbievw ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓𝜒 )
13 12 2sbbii ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 )
14 8 11 13 3bitr3i ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 )
15 sbcom2 ( [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 )
16 2 sbco2v ( [ 𝑢 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑦 ] 𝜓 )
17 16 sbbii ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 )
18 15 17 bitri ( [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 )
19 18 sbbii ( [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 )
20 12 2sbbii ( [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 )
21 9 nfsbv 𝑎 [ 𝑢 / 𝑦 ] 𝜓
22 21 sbco2v ( [ 𝑣 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 )
23 19 20 22 3bitr3ri ( [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 )
24 14 23 bibi12i ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ↔ ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) )
25 24 2albii ( ∀ 𝑢𝑣 ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑢𝑣 ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) )
26 dfich2 ( [ 𝑥𝑦 ] 𝜓 ↔ ∀ 𝑢𝑣 ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) )
27 dfich2 ( [ 𝑎𝑏 ] 𝜒 ↔ ∀ 𝑢𝑣 ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) )
28 25 26 27 3bitr4i ( [ 𝑥𝑦 ] 𝜓 ↔ [ 𝑎𝑏 ] 𝜒 )