Step |
Hyp |
Ref |
Expression |
1 |
|
ichbi12i.1 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑏 𝜓 |
3 |
2
|
sbco2v |
⊢ ( [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑦 ] 𝜓 ) |
4 |
3
|
bicomi |
⊢ ( [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ) |
5 |
4
|
sbbii |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ) |
6 |
|
sbcom2 |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) |
7 |
5 6
|
bitri |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) |
8 |
7
|
sbbii |
⊢ ( [ 𝑢 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ) |
9 |
|
nfv |
⊢ Ⅎ 𝑎 𝜓 |
10 |
9
|
nfsbv |
⊢ Ⅎ 𝑎 [ 𝑣 / 𝑦 ] 𝜓 |
11 |
10
|
sbco2v |
⊢ ( [ 𝑢 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) |
12 |
1
|
2sbievw |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ 𝜒 ) |
13 |
12
|
2sbbii |
⊢ ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ) |
14 |
8 11 13
|
3bitr3i |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ) |
15 |
|
sbcom2 |
⊢ ( [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ) |
16 |
2
|
sbco2v |
⊢ ( [ 𝑢 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) |
17 |
16
|
sbbii |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑏 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
18 |
15 17
|
bitri |
⊢ ( [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
19 |
18
|
sbbii |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
20 |
12
|
2sbbii |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) |
21 |
9
|
nfsbv |
⊢ Ⅎ 𝑎 [ 𝑢 / 𝑦 ] 𝜓 |
22 |
21
|
sbco2v |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
23 |
19 20 22
|
3bitr3ri |
⊢ ( [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) |
24 |
14 23
|
bibi12i |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ↔ ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) ) |
25 |
24
|
2albii |
⊢ ( ∀ 𝑢 ∀ 𝑣 ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑢 ∀ 𝑣 ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) ) |
26 |
|
dfich2 |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜓 ↔ ∀ 𝑢 ∀ 𝑣 ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
27 |
|
dfich2 |
⊢ ( [ 𝑎 ⇄ 𝑏 ] 𝜒 ↔ ∀ 𝑢 ∀ 𝑣 ( [ 𝑢 / 𝑎 ] [ 𝑣 / 𝑏 ] 𝜒 ↔ [ 𝑣 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜒 ) ) |
28 |
25 26 27
|
3bitr4i |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜓 ↔ [ 𝑎 ⇄ 𝑏 ] 𝜒 ) |