Metamath Proof Explorer


Theorem sbco2v

Description: A composition law for substitution. Version of sbco2 with disjoint variable conditions but not requiring ax-13 . (Contributed by NM, 30-Jun-1994) (Revised by Wolf Lammen, 29-Apr-2023)

Ref Expression
Hypothesis sbco2v.1 𝑧 𝜑
Assertion sbco2v ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbco2v.1 𝑧 𝜑
2 1 nfsbv 𝑧 [ 𝑦 / 𝑥 ] 𝜑
3 sbequ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
4 2 3 sbiev ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 )