Metamath Proof Explorer


Theorem aaan

Description: Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993) Avoid ax-10 . (Revised by Gino Giotto, 21-Nov-2024)

Ref Expression
Hypotheses aaan.1 𝑦 𝜑
aaan.2 𝑥 𝜓
Assertion aaan ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 aaan.1 𝑦 𝜑
2 aaan.2 𝑥 𝜓
3 19.26-2 ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝑦 𝜑 ∧ ∀ 𝑥𝑦 𝜓 ) )
4 1 19.3 ( ∀ 𝑦 𝜑𝜑 )
5 4 albii ( ∀ 𝑥𝑦 𝜑 ↔ ∀ 𝑥 𝜑 )
6 alcom ( ∀ 𝑥𝑦 𝜓 ↔ ∀ 𝑦𝑥 𝜓 )
7 2 19.3 ( ∀ 𝑥 𝜓𝜓 )
8 7 albii ( ∀ 𝑦𝑥 𝜓 ↔ ∀ 𝑦 𝜓 )
9 6 8 bitri ( ∀ 𝑥𝑦 𝜓 ↔ ∀ 𝑦 𝜓 )
10 5 9 anbi12i ( ( ∀ 𝑥𝑦 𝜑 ∧ ∀ 𝑥𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) )
11 3 10 bitri ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) )