Metamath Proof Explorer


Theorem aaanOLD

Description: Obsolete version of aaan as of 21-Nov-2024. (Contributed by NM, 12-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses aaan.1 𝑦 𝜑
aaan.2 𝑥 𝜓
Assertion aaanOLD ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 aaan.1 𝑦 𝜑
2 aaan.2 𝑥 𝜓
3 1 19.28 ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦 𝜓 ) )
4 3 albii ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 ∧ ∀ 𝑦 𝜓 ) )
5 2 nfal 𝑥𝑦 𝜓
6 5 19.27 ( ∀ 𝑥 ( 𝜑 ∧ ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) )
7 4 6 bitri ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑦 𝜓 ) )