| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eeor.1 |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
eeor.2 |
⊢ Ⅎ 𝑥 𝜓 |
| 3 |
|
19.43 |
⊢ ( ∃ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| 4 |
3
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| 5 |
|
19.43 |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∨ ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| 6 |
1
|
19.9 |
⊢ ( ∃ 𝑦 𝜑 ↔ 𝜑 ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) |
| 8 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓 ↔ ∃ 𝑦 ∃ 𝑥 𝜓 ) |
| 9 |
2
|
19.9 |
⊢ ( ∃ 𝑥 𝜓 ↔ 𝜓 ) |
| 10 |
9
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜓 ) |
| 11 |
8 10
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓 ↔ ∃ 𝑦 𝜓 ) |
| 12 |
7 11
|
orbi12i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∨ ∃ 𝑥 ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| 13 |
5 12
|
bitri |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| 14 |
4 13
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |