Metamath Proof Explorer


Theorem eeor

Description: Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994) Avoid ax-10 . (Revised by Gino Giotto, 21-Nov-2024)

Ref Expression
Hypotheses eeor.1 𝑦 𝜑
eeor.2 𝑥 𝜓
Assertion eeor ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 eeor.1 𝑦 𝜑
2 eeor.2 𝑥 𝜓
3 19.43 ( ∃ 𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) )
4 3 exbii ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) )
5 19.43 ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∨ ∃ 𝑥𝑦 𝜓 ) )
6 1 19.9 ( ∃ 𝑦 𝜑𝜑 )
7 6 exbii ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥 𝜑 )
8 excom ( ∃ 𝑥𝑦 𝜓 ↔ ∃ 𝑦𝑥 𝜓 )
9 2 19.9 ( ∃ 𝑥 𝜓𝜓 )
10 9 exbii ( ∃ 𝑦𝑥 𝜓 ↔ ∃ 𝑦 𝜓 )
11 8 10 bitri ( ∃ 𝑥𝑦 𝜓 ↔ ∃ 𝑦 𝜓 )
12 7 11 orbi12i ( ( ∃ 𝑥𝑦 𝜑 ∨ ∃ 𝑥𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) )
13 5 12 bitri ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) )
14 4 13 bitri ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) )