Metamath Proof Explorer


Theorem eeorOLD

Description: Obsolete version of eeor as of 21-Nov-2024. (Contributed by NM, 8-Aug-1994) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eeor.1 𝑦 𝜑
eeor.2 𝑥 𝜓
Assertion eeorOLD ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 eeor.1 𝑦 𝜑
2 eeor.2 𝑥 𝜓
3 1 19.45 ( ∃ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑦 𝜓 ) )
4 3 exbii ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∨ ∃ 𝑦 𝜓 ) )
5 2 nfex 𝑥𝑦 𝜓
6 5 19.44 ( ∃ 𝑥 ( 𝜑 ∨ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) )
7 4 6 bitri ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) )