Metamath Proof Explorer


Theorem eeorOLD

Description: Obsolete version of eeor as of 21-Nov-2024. (Contributed by NM, 8-Aug-1994) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eeor.1
|- F/ y ph
eeor.2
|- F/ x ps
Assertion eeorOLD
|- ( E. x E. y ( ph \/ ps ) <-> ( E. x ph \/ E. y ps ) )

Proof

Step Hyp Ref Expression
1 eeor.1
 |-  F/ y ph
2 eeor.2
 |-  F/ x ps
3 1 19.45
 |-  ( E. y ( ph \/ ps ) <-> ( ph \/ E. y ps ) )
4 3 exbii
 |-  ( E. x E. y ( ph \/ ps ) <-> E. x ( ph \/ E. y ps ) )
5 2 nfex
 |-  F/ x E. y ps
6 5 19.44
 |-  ( E. x ( ph \/ E. y ps ) <-> ( E. x ph \/ E. y ps ) )
7 4 6 bitri
 |-  ( E. x E. y ( ph \/ ps ) <-> ( E. x ph \/ E. y ps ) )