Metamath Proof Explorer


Theorem eeor

Description: Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994) Avoid ax-10 . (Revised by Gino Giotto, 21-Nov-2024)

Ref Expression
Hypotheses eeor.1 yφ
eeor.2 xψ
Assertion eeor xyφψxφyψ

Proof

Step Hyp Ref Expression
1 eeor.1 yφ
2 eeor.2 xψ
3 19.43 yφψyφyψ
4 3 exbii xyφψxyφyψ
5 19.43 xyφyψxyφxyψ
6 1 19.9 yφφ
7 6 exbii xyφxφ
8 excom xyψyxψ
9 2 19.9 xψψ
10 9 exbii yxψyψ
11 8 10 bitri xyψyψ
12 7 11 orbi12i xyφxyψxφyψ
13 5 12 bitri xyφyψxφyψ
14 4 13 bitri xyφψxφyψ