Metamath Proof Explorer


Theorem aaan

Description: Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993)

Ref Expression
Hypotheses aaan.1
|- F/ y ph
aaan.2
|- F/ x ps
Assertion aaan
|- ( A. x A. y ( ph /\ ps ) <-> ( A. x ph /\ A. y ps ) )

Proof

Step Hyp Ref Expression
1 aaan.1
 |-  F/ y ph
2 aaan.2
 |-  F/ x ps
3 1 19.28
 |-  ( A. y ( ph /\ ps ) <-> ( ph /\ A. y ps ) )
4 3 albii
 |-  ( A. x A. y ( ph /\ ps ) <-> A. x ( ph /\ A. y ps ) )
5 2 nfal
 |-  F/ x A. y ps
6 5 19.27
 |-  ( A. x ( ph /\ A. y ps ) <-> ( A. x ph /\ A. y ps ) )
7 4 6 bitri
 |-  ( A. x A. y ( ph /\ ps ) <-> ( A. x ph /\ A. y ps ) )