| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alcom |  |-  ( A. b A. a ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> A. a A. b ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) ) | 
						
							| 2 |  | sbcom2 |  |-  ( [ b / x ] [ a / y ] ps <-> [ a / y ] [ b / x ] ps ) | 
						
							| 3 |  | sbcom2 |  |-  ( [ a / x ] [ b / y ] ps <-> [ b / y ] [ a / x ] ps ) | 
						
							| 4 | 2 3 | bibi12i |  |-  ( ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) | 
						
							| 5 | 4 | 2albii |  |-  ( A. a A. b ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> A. a A. b ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) | 
						
							| 6 | 1 5 | bitri |  |-  ( A. b A. a ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) <-> A. a A. b ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) | 
						
							| 7 |  | dfich2 |  |-  ( [ x <> y ] ps <-> A. b A. a ( [ b / x ] [ a / y ] ps <-> [ a / x ] [ b / y ] ps ) ) | 
						
							| 8 |  | dfich2 |  |-  ( [ y <> x ] ps <-> A. a A. b ( [ a / y ] [ b / x ] ps <-> [ b / y ] [ a / x ] ps ) ) | 
						
							| 9 | 6 7 8 | 3bitr4i |  |-  ( [ x <> y ] ps <-> [ y <> x ] ps ) |