Metamath Proof Explorer


Theorem sbbib

Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023) (Proof shortened by Wolf Lammen, 4-Sep-2023)

Ref Expression
Hypotheses sbbib.y yφ
sbbib.x xψ
Assertion sbbib yyxφψxφxyψ

Proof

Step Hyp Ref Expression
1 sbbib.y yφ
2 sbbib.x xψ
3 nfs1v xyxφ
4 3 2 nfbi xyxφψ
5 nfs1v yxyψ
6 1 5 nfbi yφxyψ
7 sbequ12r y=xyxφφ
8 sbequ12 y=xψxyψ
9 7 8 bibi12d y=xyxφψφxyψ
10 4 6 9 cbvalv1 yyxφψxφxyψ