Description: Define the property of a wff ph that the setvar variables x and y are interchangeable. For an alternate definition using implicit substitution and a temporary setvar variable see ichcircshi . Another, equivalent definition using two temporary setvar variables is provided in dfich2 . (Contributed by AV, 29-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ich | |- ( [ x <> y ] ph <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vx | |- x |
|
| 1 | vy | |- y |
|
| 2 | wph | |- ph |
|
| 3 | 2 0 1 | wich | |- [ x <> y ] ph |
| 4 | va | |- a |
|
| 5 | 2 1 4 | wsb | |- [ a / y ] ph |
| 6 | 5 0 1 | wsb | |- [ y / x ] [ a / y ] ph |
| 7 | 6 4 0 | wsb | |- [ x / a ] [ y / x ] [ a / y ] ph |
| 8 | 7 2 | wb | |- ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) |
| 9 | 8 1 | wal | |- A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) |
| 10 | 9 0 | wal | |- A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) |
| 11 | 3 10 | wb | |- ( [ x <> y ] ph <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) ) |