Metamath Proof Explorer


Definition df-ich

Description: Define the property of a wff ph that the setvar variables x and y are interchangeable. For an alternate definition using implicit substitution and a temporary setvar variable see ichcircshi . Another, equivalent definition using two temporary setvar variables is provided in dfich2 . (Contributed by AV, 29-Jul-2023)

Ref Expression
Assertion df-ich
|- ( [ x <> y ] ph <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 vy
 |-  y
2 wph
 |-  ph
3 2 0 1 wich
 |-  [ x <> y ] ph
4 va
 |-  a
5 2 1 4 wsb
 |-  [ a / y ] ph
6 5 0 1 wsb
 |-  [ y / x ] [ a / y ] ph
7 6 4 0 wsb
 |-  [ x / a ] [ y / x ] [ a / y ] ph
8 7 2 wb
 |-  ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph )
9 8 1 wal
 |-  A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph )
10 9 0 wal
 |-  A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph )
11 3 10 wb
 |-  ( [ x <> y ] ph <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) )