Step |
Hyp |
Ref |
Expression |
1 |
|
ichcircshi.1 |
|- ( x = z -> ( ph <-> ps ) ) |
2 |
|
ichcircshi.2 |
|- ( y = x -> ( ps <-> ch ) ) |
3 |
|
ichcircshi.3 |
|- ( z = y -> ( ch <-> ph ) ) |
4 |
3
|
bicomd |
|- ( z = y -> ( ph <-> ch ) ) |
5 |
4
|
equcoms |
|- ( y = z -> ( ph <-> ch ) ) |
6 |
5
|
sbievw |
|- ( [ z / y ] ph <-> ch ) |
7 |
6
|
2sbbii |
|- ( [ x / z ] [ y / x ] [ z / y ] ph <-> [ x / z ] [ y / x ] ch ) |
8 |
2
|
bicomd |
|- ( y = x -> ( ch <-> ps ) ) |
9 |
8
|
equcoms |
|- ( x = y -> ( ch <-> ps ) ) |
10 |
9
|
sbievw |
|- ( [ y / x ] ch <-> ps ) |
11 |
10
|
sbbii |
|- ( [ x / z ] [ y / x ] ch <-> [ x / z ] ps ) |
12 |
1
|
bicomd |
|- ( x = z -> ( ps <-> ph ) ) |
13 |
12
|
equcoms |
|- ( z = x -> ( ps <-> ph ) ) |
14 |
13
|
sbievw |
|- ( [ x / z ] ps <-> ph ) |
15 |
7 11 14
|
3bitri |
|- ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) |
16 |
15
|
gen2 |
|- A. x A. y ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) |
17 |
|
df-ich |
|- ( [ x <> y ] ph <-> A. x A. y ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) ) |
18 |
16 17
|
mpbir |
|- [ x <> y ] ph |