| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ichcircshi.1 |
|- ( x = z -> ( ph <-> ps ) ) |
| 2 |
|
ichcircshi.2 |
|- ( y = x -> ( ps <-> ch ) ) |
| 3 |
|
ichcircshi.3 |
|- ( z = y -> ( ch <-> ph ) ) |
| 4 |
3
|
bicomd |
|- ( z = y -> ( ph <-> ch ) ) |
| 5 |
4
|
equcoms |
|- ( y = z -> ( ph <-> ch ) ) |
| 6 |
5
|
sbievw |
|- ( [ z / y ] ph <-> ch ) |
| 7 |
6
|
2sbbii |
|- ( [ x / z ] [ y / x ] [ z / y ] ph <-> [ x / z ] [ y / x ] ch ) |
| 8 |
2
|
bicomd |
|- ( y = x -> ( ch <-> ps ) ) |
| 9 |
8
|
equcoms |
|- ( x = y -> ( ch <-> ps ) ) |
| 10 |
9
|
sbievw |
|- ( [ y / x ] ch <-> ps ) |
| 11 |
10
|
sbbii |
|- ( [ x / z ] [ y / x ] ch <-> [ x / z ] ps ) |
| 12 |
1
|
bicomd |
|- ( x = z -> ( ps <-> ph ) ) |
| 13 |
12
|
equcoms |
|- ( z = x -> ( ps <-> ph ) ) |
| 14 |
13
|
sbievw |
|- ( [ x / z ] ps <-> ph ) |
| 15 |
7 11 14
|
3bitri |
|- ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) |
| 16 |
15
|
gen2 |
|- A. x A. y ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) |
| 17 |
|
df-ich |
|- ( [ x <> y ] ph <-> A. x A. y ( [ x / z ] [ y / x ] [ z / y ] ph <-> ph ) ) |
| 18 |
16 17
|
mpbir |
|- [ x <> y ] ph |