| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sban |  |-  ( [ x / b ] ( ph /\ ps ) <-> ( [ x / b ] ph /\ [ x / b ] ps ) ) | 
						
							| 2 | 1 | sbbii |  |-  ( [ b / a ] [ x / b ] ( ph /\ ps ) <-> [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) ) | 
						
							| 3 | 2 | sbbii |  |-  ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> [ a / x ] [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) ) | 
						
							| 4 |  | sban |  |-  ( [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) <-> ( [ b / a ] [ x / b ] ph /\ [ b / a ] [ x / b ] ps ) ) | 
						
							| 5 | 4 | sbbii |  |-  ( [ a / x ] [ b / a ] ( [ x / b ] ph /\ [ x / b ] ps ) <-> [ a / x ] ( [ b / a ] [ x / b ] ph /\ [ b / a ] [ x / b ] ps ) ) | 
						
							| 6 |  | sban |  |-  ( [ a / x ] ( [ b / a ] [ x / b ] ph /\ [ b / a ] [ x / b ] ps ) <-> ( [ a / x ] [ b / a ] [ x / b ] ph /\ [ a / x ] [ b / a ] [ x / b ] ps ) ) | 
						
							| 7 | 3 5 6 | 3bitri |  |-  ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( [ a / x ] [ b / a ] [ x / b ] ph /\ [ a / x ] [ b / a ] [ x / b ] ps ) ) | 
						
							| 8 |  | pm4.38 |  |-  ( ( ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> ( ( [ a / x ] [ b / a ] [ x / b ] ph /\ [ a / x ] [ b / a ] [ x / b ] ps ) <-> ( ph /\ ps ) ) ) | 
						
							| 9 | 7 8 | bitrid |  |-  ( ( ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) | 
						
							| 10 | 9 | alanimi |  |-  ( ( A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> A. b ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) | 
						
							| 11 | 10 | alanimi |  |-  ( ( A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) -> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) | 
						
							| 12 |  | df-ich |  |-  ( [ a <> b ] ph <-> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) ) | 
						
							| 13 |  | df-ich |  |-  ( [ a <> b ] ps <-> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) | 
						
							| 14 | 12 13 | anbi12i |  |-  ( ( [ a <> b ] ph /\ [ a <> b ] ps ) <-> ( A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ph <-> ph ) /\ A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ps <-> ps ) ) ) | 
						
							| 15 |  | df-ich |  |-  ( [ a <> b ] ( ph /\ ps ) <-> A. a A. b ( [ a / x ] [ b / a ] [ x / b ] ( ph /\ ps ) <-> ( ph /\ ps ) ) ) | 
						
							| 16 | 11 14 15 | 3imtr4i |  |-  ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] ( ph /\ ps ) ) |