| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sban |
⊢ ( [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑥 / 𝑏 ] 𝜓 ) ) |
| 2 |
1
|
sbbii |
⊢ ( [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ [ 𝑏 / 𝑎 ] ( [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑥 / 𝑏 ] 𝜓 ) ) |
| 3 |
2
|
sbbii |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] ( [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑥 / 𝑏 ] 𝜓 ) ) |
| 4 |
|
sban |
⊢ ( [ 𝑏 / 𝑎 ] ( [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑥 / 𝑏 ] 𝜓 ) ↔ ( [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ) ) |
| 5 |
4
|
sbbii |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] ( [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑥 / 𝑏 ] 𝜓 ) ↔ [ 𝑎 / 𝑥 ] ( [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ) ) |
| 6 |
|
sban |
⊢ ( [ 𝑎 / 𝑥 ] ( [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ) ) |
| 7 |
3 5 6
|
3bitri |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ) ) |
| 8 |
|
pm4.38 |
⊢ ( ( ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ↔ 𝜑 ) ∧ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ↔ 𝜓 ) ) → ( ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 9 |
7 8
|
bitrid |
⊢ ( ( ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ↔ 𝜑 ) ∧ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ↔ 𝜓 ) ) → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 10 |
9
|
alanimi |
⊢ ( ( ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ↔ 𝜑 ) ∧ ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ↔ 𝜓 ) ) → ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 11 |
10
|
alanimi |
⊢ ( ( ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ↔ 𝜑 ) ∧ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ↔ 𝜓 ) ) → ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 12 |
|
df-ich |
⊢ ( [ 𝑎 ⇄ 𝑏 ] 𝜑 ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ↔ 𝜑 ) ) |
| 13 |
|
df-ich |
⊢ ( [ 𝑎 ⇄ 𝑏 ] 𝜓 ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ↔ 𝜓 ) ) |
| 14 |
12 13
|
anbi12i |
⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑 ∧ [ 𝑎 ⇄ 𝑏 ] 𝜓 ) ↔ ( ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜑 ↔ 𝜑 ) ∧ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] 𝜓 ↔ 𝜓 ) ) ) |
| 15 |
|
df-ich |
⊢ ( [ 𝑎 ⇄ 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑎 ] [ 𝑥 / 𝑏 ] ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 16 |
11 14 15
|
3imtr4i |
⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑 ∧ [ 𝑎 ⇄ 𝑏 ] 𝜓 ) → [ 𝑎 ⇄ 𝑏 ] ( 𝜑 ∧ 𝜓 ) ) |