| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( ph /\ ps ) -> ph ) | 
						
							| 2 | 1 | sbimi |  |-  ( [ y / x ] ( ph /\ ps ) -> [ y / x ] ph ) | 
						
							| 3 |  | simpr |  |-  ( ( ph /\ ps ) -> ps ) | 
						
							| 4 | 3 | sbimi |  |-  ( [ y / x ] ( ph /\ ps ) -> [ y / x ] ps ) | 
						
							| 5 | 2 4 | jca |  |-  ( [ y / x ] ( ph /\ ps ) -> ( [ y / x ] ph /\ [ y / x ] ps ) ) | 
						
							| 6 |  | pm3.2 |  |-  ( ph -> ( ps -> ( ph /\ ps ) ) ) | 
						
							| 7 | 6 | sb2imi |  |-  ( [ y / x ] ph -> ( [ y / x ] ps -> [ y / x ] ( ph /\ ps ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( [ y / x ] ph /\ [ y / x ] ps ) -> [ y / x ] ( ph /\ ps ) ) | 
						
							| 9 | 5 8 | impbii |  |-  ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) ) |