| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sban |  |-  ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) ) | 
						
							| 2 | 1 | anbi1i |  |-  ( ( [ y / x ] ( ph /\ ps ) /\ [ y / x ] ch ) <-> ( ( [ y / x ] ph /\ [ y / x ] ps ) /\ [ y / x ] ch ) ) | 
						
							| 3 |  | df-3an |  |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) | 
						
							| 4 | 3 | sbbii |  |-  ( [ y / x ] ( ph /\ ps /\ ch ) <-> [ y / x ] ( ( ph /\ ps ) /\ ch ) ) | 
						
							| 5 |  | sban |  |-  ( [ y / x ] ( ( ph /\ ps ) /\ ch ) <-> ( [ y / x ] ( ph /\ ps ) /\ [ y / x ] ch ) ) | 
						
							| 6 | 4 5 | bitri |  |-  ( [ y / x ] ( ph /\ ps /\ ch ) <-> ( [ y / x ] ( ph /\ ps ) /\ [ y / x ] ch ) ) | 
						
							| 7 |  | df-3an |  |-  ( ( [ y / x ] ph /\ [ y / x ] ps /\ [ y / x ] ch ) <-> ( ( [ y / x ] ph /\ [ y / x ] ps ) /\ [ y / x ] ch ) ) | 
						
							| 8 | 2 6 7 | 3bitr4i |  |-  ( [ y / x ] ( ph /\ ps /\ ch ) <-> ( [ y / x ] ph /\ [ y / x ] ps /\ [ y / x ] ch ) ) |