Metamath Proof Explorer


Theorem sb3an

Description: Threefold conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006)

Ref Expression
Assertion sb3an ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
2 1 sbbii ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓𝜒 ) ↔ [ 𝑦 / 𝑥 ] ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
3 sban ( [ 𝑦 / 𝑥 ] ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )
4 sban ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )
5 4 anbi1i ( ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )
6 df-3an ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )
7 5 6 bitr4i ( ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )
8 2 3 7 3bitri ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )