Metamath Proof Explorer


Theorem sb2imi

Description: Distribute substitution over implication. Compare al2imi . (Contributed by Steven Nguyen, 13-Aug-2023)

Ref Expression
Hypothesis sb2imi.1
|- ( ph -> ( ps -> ch ) )
Assertion sb2imi
|- ( [ t / x ] ph -> ( [ t / x ] ps -> [ t / x ] ch ) )

Proof

Step Hyp Ref Expression
1 sb2imi.1
 |-  ( ph -> ( ps -> ch ) )
2 1 sbimi
 |-  ( [ t / x ] ph -> [ t / x ] ( ps -> ch ) )
3 sbi1
 |-  ( [ t / x ] ( ps -> ch ) -> ( [ t / x ] ps -> [ t / x ] ch ) )
4 2 3 syl
 |-  ( [ t / x ] ph -> ( [ t / x ] ps -> [ t / x ] ch ) )