| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-sb |  |-  ( [ y / x ] ( ph -> ps ) <-> A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) ) | 
						
							| 2 |  | ax-2 |  |-  ( ( x = z -> ( ph -> ps ) ) -> ( ( x = z -> ph ) -> ( x = z -> ps ) ) ) | 
						
							| 3 | 2 | al2imi |  |-  ( A. x ( x = z -> ( ph -> ps ) ) -> ( A. x ( x = z -> ph ) -> A. x ( x = z -> ps ) ) ) | 
						
							| 4 | 3 | imim3i |  |-  ( ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( ( z = y -> A. x ( x = z -> ph ) ) -> ( z = y -> A. x ( x = z -> ps ) ) ) ) | 
						
							| 5 | 4 | al2imi |  |-  ( A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( A. z ( z = y -> A. x ( x = z -> ph ) ) -> A. z ( z = y -> A. x ( x = z -> ps ) ) ) ) | 
						
							| 6 |  | df-sb |  |-  ( [ y / x ] ph <-> A. z ( z = y -> A. x ( x = z -> ph ) ) ) | 
						
							| 7 |  | df-sb |  |-  ( [ y / x ] ps <-> A. z ( z = y -> A. x ( x = z -> ps ) ) ) | 
						
							| 8 | 5 6 7 | 3imtr4g |  |-  ( A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) | 
						
							| 9 | 1 8 | sylbi |  |-  ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |