Step |
Hyp |
Ref |
Expression |
1 |
|
df-sb |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ∀ 𝑧 ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → ( 𝜑 → 𝜓 ) ) ) ) |
2 |
|
ax-2 |
⊢ ( ( 𝑥 = 𝑧 → ( 𝜑 → 𝜓 ) ) → ( ( 𝑥 = 𝑧 → 𝜑 ) → ( 𝑥 = 𝑧 → 𝜓 ) ) ) |
3 |
2
|
al2imi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 → ( 𝜑 → 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜓 ) ) ) |
4 |
3
|
imim3i |
⊢ ( ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → ( 𝜑 → 𝜓 ) ) ) → ( ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) → ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜓 ) ) ) ) |
5 |
4
|
al2imi |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → ( 𝜑 → 𝜓 ) ) ) → ( ∀ 𝑧 ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) → ∀ 𝑧 ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜓 ) ) ) ) |
6 |
|
df-sb |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) |
7 |
|
df-sb |
⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ∀ 𝑧 ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜓 ) ) ) |
8 |
5 6 7
|
3imtr4g |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑧 → ( 𝜑 → 𝜓 ) ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
9 |
1 8
|
sylbi |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |