Metamath Proof Explorer


Theorem sbi1

Description: Distribute substitution over implication. (Contributed by NM, 14-May-1993) Remove dependencies on axioms. (Revised by Steven Nguyen, 24-Jul-2023)

Ref Expression
Assertion sbi1 y x φ ψ y x φ y x ψ

Proof

Step Hyp Ref Expression
1 df-sb y x φ ψ z z = y x x = z φ ψ
2 ax-2 x = z φ ψ x = z φ x = z ψ
3 2 al2imi x x = z φ ψ x x = z φ x x = z ψ
4 3 imim3i z = y x x = z φ ψ z = y x x = z φ z = y x x = z ψ
5 4 al2imi z z = y x x = z φ ψ z z = y x x = z φ z z = y x x = z ψ
6 df-sb y x φ z z = y x x = z φ
7 df-sb y x ψ z z = y x x = z ψ
8 5 6 7 3imtr4g z z = y x x = z φ ψ y x φ y x ψ
9 1 8 sylbi y x φ ψ y x φ y x ψ