Description: Distribute substitution over implication. Compare al2imi . (Contributed by Steven Nguyen, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sb2imi.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
Assertion | sb2imi | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb2imi.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | sbimi | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → [ 𝑡 / 𝑥 ] ( 𝜓 → 𝜒 ) ) |
3 | sbi1 | ⊢ ( [ 𝑡 / 𝑥 ] ( 𝜓 → 𝜒 ) → ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜒 ) ) | |
4 | 2 3 | syl | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜒 ) ) |