Metamath Proof Explorer


Theorem sb2imi

Description: Distribute substitution over implication. Compare al2imi . (Contributed by Steven Nguyen, 13-Aug-2023)

Ref Expression
Hypothesis sb2imi.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sb2imi ( [ 𝑡 / 𝑥 ] 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sb2imi.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 sbimi ( [ 𝑡 / 𝑥 ] 𝜑 → [ 𝑡 / 𝑥 ] ( 𝜓𝜒 ) )
3 sbi1 ( [ 𝑡 / 𝑥 ] ( 𝜓𝜒 ) → ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜒 ) )
4 2 3 syl ( [ 𝑡 / 𝑥 ] 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜒 ) )