Metamath Proof Explorer


Theorem sb2imi

Description: Distribute substitution over implication. Compare al2imi . (Contributed by Steven Nguyen, 13-Aug-2023)

Ref Expression
Hypothesis sb2imi.1 φψχ
Assertion sb2imi txφtxψtxχ

Proof

Step Hyp Ref Expression
1 sb2imi.1 φψχ
2 1 sbimi txφtxψχ
3 sbi1 txψχtxψtxχ
4 2 3 syl txφtxψtxχ