Step |
Hyp |
Ref |
Expression |
1 |
|
notbi |
|- ( ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) <-> ( -. [ a / u ] [ b / a ] [ u / b ] ph <-> -. ph ) ) |
2 |
|
sbn |
|- ( [ u / b ] -. ph <-> -. [ u / b ] ph ) |
3 |
2
|
sbbii |
|- ( [ b / a ] [ u / b ] -. ph <-> [ b / a ] -. [ u / b ] ph ) |
4 |
|
sbn |
|- ( [ b / a ] -. [ u / b ] ph <-> -. [ b / a ] [ u / b ] ph ) |
5 |
3 4
|
bitri |
|- ( [ b / a ] [ u / b ] -. ph <-> -. [ b / a ] [ u / b ] ph ) |
6 |
5
|
sbbii |
|- ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> [ a / u ] -. [ b / a ] [ u / b ] ph ) |
7 |
|
sbn |
|- ( [ a / u ] -. [ b / a ] [ u / b ] ph <-> -. [ a / u ] [ b / a ] [ u / b ] ph ) |
8 |
6 7
|
bitri |
|- ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. [ a / u ] [ b / a ] [ u / b ] ph ) |
9 |
8
|
bibi1i |
|- ( ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) <-> ( -. [ a / u ] [ b / a ] [ u / b ] ph <-> -. ph ) ) |
10 |
1 9
|
bitr4i |
|- ( ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) <-> ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) ) |
11 |
10
|
2albii |
|- ( A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) ) |
12 |
|
df-ich |
|- ( [ a <> b ] ph <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) ) |
13 |
|
df-ich |
|- ( [ a <> b ] -. ph <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) ) |
14 |
11 12 13
|
3bitr4i |
|- ( [ a <> b ] ph <-> [ a <> b ] -. ph ) |