| Step | Hyp | Ref | Expression | 
						
							| 1 |  | notbi |  |-  ( ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) <-> ( -. [ a / u ] [ b / a ] [ u / b ] ph <-> -. ph ) ) | 
						
							| 2 |  | sbn |  |-  ( [ u / b ] -. ph <-> -. [ u / b ] ph ) | 
						
							| 3 | 2 | sbbii |  |-  ( [ b / a ] [ u / b ] -. ph <-> [ b / a ] -. [ u / b ] ph ) | 
						
							| 4 |  | sbn |  |-  ( [ b / a ] -. [ u / b ] ph <-> -. [ b / a ] [ u / b ] ph ) | 
						
							| 5 | 3 4 | bitri |  |-  ( [ b / a ] [ u / b ] -. ph <-> -. [ b / a ] [ u / b ] ph ) | 
						
							| 6 | 5 | sbbii |  |-  ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> [ a / u ] -. [ b / a ] [ u / b ] ph ) | 
						
							| 7 |  | sbn |  |-  ( [ a / u ] -. [ b / a ] [ u / b ] ph <-> -. [ a / u ] [ b / a ] [ u / b ] ph ) | 
						
							| 8 | 6 7 | bitri |  |-  ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. [ a / u ] [ b / a ] [ u / b ] ph ) | 
						
							| 9 | 8 | bibi1i |  |-  ( ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) <-> ( -. [ a / u ] [ b / a ] [ u / b ] ph <-> -. ph ) ) | 
						
							| 10 | 1 9 | bitr4i |  |-  ( ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) <-> ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) ) | 
						
							| 11 | 10 | 2albii |  |-  ( A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) ) | 
						
							| 12 |  | df-ich |  |-  ( [ a <> b ] ph <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) ) | 
						
							| 13 |  | df-ich |  |-  ( [ a <> b ] -. ph <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] -. ph <-> -. ph ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i |  |-  ( [ a <> b ] ph <-> [ a <> b ] -. ph ) |