| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ichn |  |-  ( [ a <> b ] ps <-> [ a <> b ] -. ps ) | 
						
							| 2 |  | ichan |  |-  ( ( [ a <> b ] ph /\ [ a <> b ] -. ps ) -> [ a <> b ] ( ph /\ -. ps ) ) | 
						
							| 3 | 1 2 | sylan2b |  |-  ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] ( ph /\ -. ps ) ) | 
						
							| 4 |  | ichn |  |-  ( [ a <> b ] ( ph /\ -. ps ) <-> [ a <> b ] -. ( ph /\ -. ps ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] -. ( ph /\ -. ps ) ) | 
						
							| 6 |  | iman |  |-  ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) ) | 
						
							| 7 | 6 | a1i |  |-  ( T. -> ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) ) ) | 
						
							| 8 | 7 | ichbidv |  |-  ( T. -> ( [ a <> b ] ( ph -> ps ) <-> [ a <> b ] -. ( ph /\ -. ps ) ) ) | 
						
							| 9 | 8 | mptru |  |-  ( [ a <> b ] ( ph -> ps ) <-> [ a <> b ] -. ( ph /\ -. ps ) ) | 
						
							| 10 | 5 9 | sylibr |  |-  ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] ( ph -> ps ) ) |