Step |
Hyp |
Ref |
Expression |
1 |
|
ichn |
|- ( [ a <> b ] ps <-> [ a <> b ] -. ps ) |
2 |
|
ichan |
|- ( ( [ a <> b ] ph /\ [ a <> b ] -. ps ) -> [ a <> b ] ( ph /\ -. ps ) ) |
3 |
1 2
|
sylan2b |
|- ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] ( ph /\ -. ps ) ) |
4 |
|
ichn |
|- ( [ a <> b ] ( ph /\ -. ps ) <-> [ a <> b ] -. ( ph /\ -. ps ) ) |
5 |
3 4
|
sylib |
|- ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] -. ( ph /\ -. ps ) ) |
6 |
|
iman |
|- ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) ) |
7 |
6
|
a1i |
|- ( T. -> ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) ) ) |
8 |
7
|
ichbidv |
|- ( T. -> ( [ a <> b ] ( ph -> ps ) <-> [ a <> b ] -. ( ph /\ -. ps ) ) ) |
9 |
8
|
mptru |
|- ( [ a <> b ] ( ph -> ps ) <-> [ a <> b ] -. ( ph /\ -. ps ) ) |
10 |
5 9
|
sylibr |
|- ( ( [ a <> b ] ph /\ [ a <> b ] ps ) -> [ a <> b ] ( ph -> ps ) ) |