| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ichbidv.1 |
|- ( ph -> ( ps <-> ch ) ) |
| 2 |
1
|
sbbidv |
|- ( ph -> ( [ a / y ] ps <-> [ a / y ] ch ) ) |
| 3 |
2
|
sbbidv |
|- ( ph -> ( [ y / x ] [ a / y ] ps <-> [ y / x ] [ a / y ] ch ) ) |
| 4 |
3
|
sbbidv |
|- ( ph -> ( [ x / a ] [ y / x ] [ a / y ] ps <-> [ x / a ] [ y / x ] [ a / y ] ch ) ) |
| 5 |
4 1
|
bibi12d |
|- ( ph -> ( ( [ x / a ] [ y / x ] [ a / y ] ps <-> ps ) <-> ( [ x / a ] [ y / x ] [ a / y ] ch <-> ch ) ) ) |
| 6 |
5
|
albidv |
|- ( ph -> ( A. y ( [ x / a ] [ y / x ] [ a / y ] ps <-> ps ) <-> A. y ( [ x / a ] [ y / x ] [ a / y ] ch <-> ch ) ) ) |
| 7 |
6
|
albidv |
|- ( ph -> ( A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ps <-> ps ) <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ch <-> ch ) ) ) |
| 8 |
|
df-ich |
|- ( [ x <> y ] ps <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ps <-> ps ) ) |
| 9 |
|
df-ich |
|- ( [ x <> y ] ch <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ch <-> ch ) ) |
| 10 |
7 8 9
|
3bitr4g |
|- ( ph -> ( [ x <> y ] ps <-> [ x <> y ] ch ) ) |