Metamath Proof Explorer


Theorem ichbidv

Description: Formula building rule for interchangeability (deduction). (Contributed by SN, 4-May-2024)

Ref Expression
Hypothesis ichbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ichbidv ( 𝜑 → ( [ 𝑥𝑦 ] 𝜓 ↔ [ 𝑥𝑦 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ichbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 sbbidv ( 𝜑 → ( [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑦 ] 𝜒 ) )
3 2 sbbidv ( 𝜑 → ( [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ) )
4 3 sbbidv ( 𝜑 → ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ) )
5 4 1 bibi12d ( 𝜑 → ( ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓𝜓 ) ↔ ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒𝜒 ) ) )
6 5 albidv ( 𝜑 → ( ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓𝜓 ) ↔ ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒𝜒 ) ) )
7 6 albidv ( 𝜑 → ( ∀ 𝑥𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓𝜓 ) ↔ ∀ 𝑥𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒𝜒 ) ) )
8 df-ich ( [ 𝑥𝑦 ] 𝜓 ↔ ∀ 𝑥𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓𝜓 ) )
9 df-ich ( [ 𝑥𝑦 ] 𝜒 ↔ ∀ 𝑥𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒𝜒 ) )
10 7 8 9 3bitr4g ( 𝜑 → ( [ 𝑥𝑦 ] 𝜓 ↔ [ 𝑥𝑦 ] 𝜒 ) )