Step |
Hyp |
Ref |
Expression |
1 |
|
ichbidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
1
|
sbbidv |
⊢ ( 𝜑 → ( [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑎 / 𝑦 ] 𝜒 ) ) |
3 |
2
|
sbbidv |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ) ) |
4 |
3
|
sbbidv |
⊢ ( 𝜑 → ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ) ) |
5 |
4 1
|
bibi12d |
⊢ ( 𝜑 → ( ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ 𝜓 ) ↔ ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ↔ 𝜒 ) ) ) |
6 |
5
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ 𝜓 ) ↔ ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ↔ 𝜒 ) ) ) |
7 |
6
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ↔ 𝜒 ) ) ) |
8 |
|
df-ich |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜓 ↔ 𝜓 ) ) |
9 |
|
df-ich |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜒 ↔ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜒 ↔ 𝜒 ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( 𝜑 → ( [ 𝑥 ⇄ 𝑦 ] 𝜓 ↔ [ 𝑥 ⇄ 𝑦 ] 𝜒 ) ) |