Metamath Proof Explorer


Theorem ichbidv

Description: Formula building rule for interchangeability (deduction). (Contributed by SN, 4-May-2024)

Ref Expression
Hypothesis ichbidv.1 φψχ
Assertion ichbidv φxyψxyχ

Proof

Step Hyp Ref Expression
1 ichbidv.1 φψχ
2 1 sbbidv φayψayχ
3 2 sbbidv φyxayψyxayχ
4 3 sbbidv φxayxayψxayxayχ
5 4 1 bibi12d φxayxayψψxayxayχχ
6 5 albidv φyxayxayψψyxayxayχχ
7 6 albidv φxyxayxayψψxyxayxayχχ
8 df-ich xyψxyxayxayψψ
9 df-ich xyχxyxayxayχχ
10 7 8 9 3bitr4g φxyψxyχ