| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ichn | ⊢ ( [ 𝑎 ⇄ 𝑏 ] 𝜓  ↔  [ 𝑎 ⇄ 𝑏 ] ¬  𝜓 ) | 
						
							| 2 |  | ichan | ⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑  ∧  [ 𝑎 ⇄ 𝑏 ] ¬  𝜓 )  →  [ 𝑎 ⇄ 𝑏 ] ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 3 | 1 2 | sylan2b | ⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑  ∧  [ 𝑎 ⇄ 𝑏 ] 𝜓 )  →  [ 𝑎 ⇄ 𝑏 ] ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 4 |  | ichn | ⊢ ( [ 𝑎 ⇄ 𝑏 ] ( 𝜑  ∧  ¬  𝜓 )  ↔  [ 𝑎 ⇄ 𝑏 ] ¬  ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑  ∧  [ 𝑎 ⇄ 𝑏 ] 𝜓 )  →  [ 𝑎 ⇄ 𝑏 ] ¬  ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 6 |  | iman | ⊢ ( ( 𝜑  →  𝜓 )  ↔  ¬  ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( ⊤  →  ( ( 𝜑  →  𝜓 )  ↔  ¬  ( 𝜑  ∧  ¬  𝜓 ) ) ) | 
						
							| 8 | 7 | ichbidv | ⊢ ( ⊤  →  ( [ 𝑎 ⇄ 𝑏 ] ( 𝜑  →  𝜓 )  ↔  [ 𝑎 ⇄ 𝑏 ] ¬  ( 𝜑  ∧  ¬  𝜓 ) ) ) | 
						
							| 9 | 8 | mptru | ⊢ ( [ 𝑎 ⇄ 𝑏 ] ( 𝜑  →  𝜓 )  ↔  [ 𝑎 ⇄ 𝑏 ] ¬  ( 𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 10 | 5 9 | sylibr | ⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑  ∧  [ 𝑎 ⇄ 𝑏 ] 𝜓 )  →  [ 𝑎 ⇄ 𝑏 ] ( 𝜑  →  𝜓 ) ) |