Step |
Hyp |
Ref |
Expression |
1 |
|
ichn |
⊢ ( [ 𝑎 ⇄ 𝑏 ] 𝜓 ↔ [ 𝑎 ⇄ 𝑏 ] ¬ 𝜓 ) |
2 |
|
ichan |
⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑 ∧ [ 𝑎 ⇄ 𝑏 ] ¬ 𝜓 ) → [ 𝑎 ⇄ 𝑏 ] ( 𝜑 ∧ ¬ 𝜓 ) ) |
3 |
1 2
|
sylan2b |
⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑 ∧ [ 𝑎 ⇄ 𝑏 ] 𝜓 ) → [ 𝑎 ⇄ 𝑏 ] ( 𝜑 ∧ ¬ 𝜓 ) ) |
4 |
|
ichn |
⊢ ( [ 𝑎 ⇄ 𝑏 ] ( 𝜑 ∧ ¬ 𝜓 ) ↔ [ 𝑎 ⇄ 𝑏 ] ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |
5 |
3 4
|
sylib |
⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑 ∧ [ 𝑎 ⇄ 𝑏 ] 𝜓 ) → [ 𝑎 ⇄ 𝑏 ] ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |
6 |
|
iman |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |
7 |
6
|
a1i |
⊢ ( ⊤ → ( ( 𝜑 → 𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) ) |
8 |
7
|
ichbidv |
⊢ ( ⊤ → ( [ 𝑎 ⇄ 𝑏 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑎 ⇄ 𝑏 ] ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) ) |
9 |
8
|
mptru |
⊢ ( [ 𝑎 ⇄ 𝑏 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑎 ⇄ 𝑏 ] ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |
10 |
5 9
|
sylibr |
⊢ ( ( [ 𝑎 ⇄ 𝑏 ] 𝜑 ∧ [ 𝑎 ⇄ 𝑏 ] 𝜓 ) → [ 𝑎 ⇄ 𝑏 ] ( 𝜑 → 𝜓 ) ) |