Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcgf.1 | |- F/_ x A  | 
					|
| spcgf.2 | |- F/ x ps  | 
					||
| spcgf.3 | |- ( x = A -> ( ph <-> ps ) )  | 
					||
| Assertion | spcegf | |- ( A e. V -> ( ps -> E. x ph ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spcgf.1 | |- F/_ x A  | 
						|
| 2 | spcgf.2 | |- F/ x ps  | 
						|
| 3 | spcgf.3 | |- ( x = A -> ( ph <-> ps ) )  | 
						|
| 4 | 2 | nfn | |- F/ x -. ps  | 
						
| 5 | 3 | notbid | |- ( x = A -> ( -. ph <-> -. ps ) )  | 
						
| 6 | 1 4 5 | spcgf | |- ( A e. V -> ( A. x -. ph -> -. ps ) )  | 
						
| 7 | 6 | con2d | |- ( A e. V -> ( ps -> -. A. x -. ph ) )  | 
						
| 8 | df-ex | |- ( E. x ph <-> -. A. x -. ph )  | 
						|
| 9 | 7 8 | imbitrrdi | |- ( A e. V -> ( ps -> E. x ph ) )  |