Metamath Proof Explorer


Theorem ichnreuop

Description: If the setvar variables are interchangeable in a wff, there is never a unique ordered pair with different components fulfilling the wff (because if <. a , b >. fulfils the wff, then also <. b , a >. fulfils the wff). (Contributed by AV, 27-Aug-2023)

Ref Expression
Assertion ichnreuop a b φ ¬ ∃! p X × X a b p = a b a b φ

Proof

Step Hyp Ref Expression
1 notnotb a b x y = a b a b φ ¬ ¬ a b x y = a b a b φ
2 nfv c x y = a b a b φ
3 nfv d x y = a b a b φ
4 nfv a x y = c d
5 nfv a c d
6 nfsbc1v a [˙c / a]˙ [˙d / b]˙ φ
7 4 5 6 nf3an a x y = c d c d [˙c / a]˙ [˙d / b]˙ φ
8 nfv b x y = c d
9 nfv b c d
10 nfcv _ b c
11 nfsbc1v b [˙d / b]˙ φ
12 10 11 nfsbcw b [˙c / a]˙ [˙d / b]˙ φ
13 8 9 12 nf3an b x y = c d c d [˙c / a]˙ [˙d / b]˙ φ
14 opeq12 a = c b = d a b = c d
15 14 eqeq2d a = c b = d x y = a b x y = c d
16 simpl a = c b = d a = c
17 simpr a = c b = d b = d
18 16 17 neeq12d a = c b = d a b c d
19 sbceq1a b = d φ [˙d / b]˙ φ
20 sbceq1a a = c [˙d / b]˙ φ [˙c / a]˙ [˙d / b]˙ φ
21 19 20 sylan9bbr a = c b = d φ [˙c / a]˙ [˙d / b]˙ φ
22 15 18 21 3anbi123d a = c b = d x y = a b a b φ x y = c d c d [˙c / a]˙ [˙d / b]˙ φ
23 2 3 7 13 22 cbvex2v a b x y = a b a b φ c d x y = c d c d [˙c / a]˙ [˙d / b]˙ φ
24 vex x V
25 vex y V
26 24 25 opth x y = c d x = c y = d
27 eleq1w y = d y X d X
28 27 biimpcd y X y = d d X
29 28 adantl x X y X y = d d X
30 29 adantl a b φ x X y X y = d d X
31 30 com12 y = d a b φ x X y X d X
32 31 adantl x = c y = d a b φ x X y X d X
33 26 32 sylbi x y = c d a b φ x X y X d X
34 33 3ad2ant1 x y = c d c d [˙c / a]˙ [˙d / b]˙ φ a b φ x X y X d X
35 34 impcom a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ d X
36 eleq1w x = c x X c X
37 36 biimpcd x X x = c c X
38 37 adantr x X y X x = c c X
39 38 adantl a b φ x X y X x = c c X
40 39 com12 x = c a b φ x X y X c X
41 40 adantr x = c y = d a b φ x X y X c X
42 26 41 sylbi x y = c d a b φ x X y X c X
43 42 3ad2ant1 x y = c d c d [˙c / a]˙ [˙d / b]˙ φ a b φ x X y X c X
44 43 impcom a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ c X
45 eqidd a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ d c = d c
46 necom c d d c
47 46 biimpi c d d c
48 47 3ad2ant2 x y = c d c d [˙c / a]˙ [˙d / b]˙ φ d c
49 48 adantl a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ d c
50 dfich2 a b φ c d c a d b φ d a c b φ
51 2sp c d c a d b φ d a c b φ c a d b φ d a c b φ
52 sbsbc d b φ [˙d / b]˙ φ
53 52 sbbii c a d b φ c a [˙d / b]˙ φ
54 sbsbc c a [˙d / b]˙ φ [˙c / a]˙ [˙d / b]˙ φ
55 53 54 bitri c a d b φ [˙c / a]˙ [˙d / b]˙ φ
56 sbsbc c b φ [˙c / b]˙ φ
57 56 sbbii d a c b φ d a [˙c / b]˙ φ
58 sbsbc d a [˙c / b]˙ φ [˙d / a]˙ [˙c / b]˙ φ
59 57 58 bitri d a c b φ [˙d / a]˙ [˙c / b]˙ φ
60 51 55 59 3bitr3g c d c a d b φ d a c b φ [˙c / a]˙ [˙d / b]˙ φ [˙d / a]˙ [˙c / b]˙ φ
61 60 biimpd c d c a d b φ d a c b φ [˙c / a]˙ [˙d / b]˙ φ [˙d / a]˙ [˙c / b]˙ φ
62 50 61 sylbi a b φ [˙c / a]˙ [˙d / b]˙ φ [˙d / a]˙ [˙c / b]˙ φ
63 62 adantr a b φ x X y X [˙c / a]˙ [˙d / b]˙ φ [˙d / a]˙ [˙c / b]˙ φ
64 63 com12 [˙c / a]˙ [˙d / b]˙ φ a b φ x X y X [˙d / a]˙ [˙c / b]˙ φ
65 64 3ad2ant3 x y = c d c d [˙c / a]˙ [˙d / b]˙ φ a b φ x X y X [˙d / a]˙ [˙c / b]˙ φ
66 65 impcom a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ [˙d / a]˙ [˙c / b]˙ φ
67 sbccom [˙c / b]˙ [˙d / a]˙ φ [˙d / a]˙ [˙c / b]˙ φ
68 66 67 sylibr a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ [˙c / b]˙ [˙d / a]˙ φ
69 45 49 68 3jca a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ d c = d c d c [˙c / b]˙ [˙d / a]˙ φ
70 nfv b d c = d c
71 nfv b d c
72 nfsbc1v b [˙c / b]˙ [˙d / a]˙ φ
73 70 71 72 nf3an b d c = d c d c [˙c / b]˙ [˙d / a]˙ φ
74 opeq2 b = c d b = d c
75 74 eqeq2d b = c d c = d b d c = d c
76 neeq2 b = c d b d c
77 sbceq1a b = c [˙d / a]˙ φ [˙c / b]˙ [˙d / a]˙ φ
78 75 76 77 3anbi123d b = c d c = d b d b [˙d / a]˙ φ d c = d c d c [˙c / b]˙ [˙d / a]˙ φ
79 10 73 78 spcegf c X d c = d c d c [˙c / b]˙ [˙d / a]˙ φ b d c = d b d b [˙d / a]˙ φ
80 44 69 79 sylc a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ b d c = d b d b [˙d / a]˙ φ
81 nfcv _ a d
82 nfv a d c = d b
83 nfv a d b
84 nfsbc1v a [˙d / a]˙ φ
85 82 83 84 nf3an a d c = d b d b [˙d / a]˙ φ
86 85 nfex a b d c = d b d b [˙d / a]˙ φ
87 opeq1 a = d a b = d b
88 87 eqeq2d a = d d c = a b d c = d b
89 neeq1 a = d a b d b
90 sbceq1a a = d φ [˙d / a]˙ φ
91 88 89 90 3anbi123d a = d d c = a b a b φ d c = d b d b [˙d / a]˙ φ
92 91 exbidv a = d b d c = a b a b φ b d c = d b d b [˙d / a]˙ φ
93 81 86 92 spcegf d X b d c = d b d b [˙d / a]˙ φ a b d c = a b a b φ
94 35 80 93 sylc a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ a b d c = a b a b φ
95 vex d V
96 vex c V
97 95 96 opth1 d c = c d d = c
98 97 equcomd d c = c d c = d
99 98 necon3ai c d ¬ d c = c d
100 99 adantl x y = c d c d ¬ d c = c d
101 eqeq2 x y = c d d c = x y d c = c d
102 101 adantr x y = c d c d d c = x y d c = c d
103 100 102 mtbird x y = c d c d ¬ d c = x y
104 103 3adant3 x y = c d c d [˙c / a]˙ [˙d / b]˙ φ ¬ d c = x y
105 104 adantl a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ ¬ d c = x y
106 94 105 jcnd a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ ¬ a b d c = a b a b φ d c = x y
107 opeq1 v = d v w = d w
108 107 eqeq1d v = d v w = a b d w = a b
109 108 3anbi1d v = d v w = a b a b φ d w = a b a b φ
110 109 2exbidv v = d a b v w = a b a b φ a b d w = a b a b φ
111 107 eqeq1d v = d v w = x y d w = x y
112 110 111 imbi12d v = d a b v w = a b a b φ v w = x y a b d w = a b a b φ d w = x y
113 112 notbid v = d ¬ a b v w = a b a b φ v w = x y ¬ a b d w = a b a b φ d w = x y
114 opeq2 w = c d w = d c
115 114 eqeq1d w = c d w = a b d c = a b
116 115 3anbi1d w = c d w = a b a b φ d c = a b a b φ
117 116 2exbidv w = c a b d w = a b a b φ a b d c = a b a b φ
118 114 eqeq1d w = c d w = x y d c = x y
119 117 118 imbi12d w = c a b d w = a b a b φ d w = x y a b d c = a b a b φ d c = x y
120 119 notbid w = c ¬ a b d w = a b a b φ d w = x y ¬ a b d c = a b a b φ d c = x y
121 113 120 rspc2ev d X c X ¬ a b d c = a b a b φ d c = x y v X w X ¬ a b v w = a b a b φ v w = x y
122 35 44 106 121 syl3anc a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ v X w X ¬ a b v w = a b a b φ v w = x y
123 rexnal2 v X w X ¬ a b v w = a b a b φ v w = x y ¬ v X w X a b v w = a b a b φ v w = x y
124 122 123 sylib a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ ¬ v X w X a b v w = a b a b φ v w = x y
125 124 ex a b φ x X y X x y = c d c d [˙c / a]˙ [˙d / b]˙ φ ¬ v X w X a b v w = a b a b φ v w = x y
126 125 exlimdvv a b φ x X y X c d x y = c d c d [˙c / a]˙ [˙d / b]˙ φ ¬ v X w X a b v w = a b a b φ v w = x y
127 23 126 syl5bi a b φ x X y X a b x y = a b a b φ ¬ v X w X a b v w = a b a b φ v w = x y
128 1 127 syl5bir a b φ x X y X ¬ ¬ a b x y = a b a b φ ¬ v X w X a b v w = a b a b φ v w = x y
129 128 orrd a b φ x X y X ¬ a b x y = a b a b φ ¬ v X w X a b v w = a b a b φ v w = x y
130 ianor ¬ a b x y = a b a b φ v X w X a b v w = a b a b φ v w = x y ¬ a b x y = a b a b φ ¬ v X w X a b v w = a b a b φ v w = x y
131 129 130 sylibr a b φ x X y X ¬ a b x y = a b a b φ v X w X a b v w = a b a b φ v w = x y
132 131 ralrimivva a b φ x X y X ¬ a b x y = a b a b φ v X w X a b v w = a b a b φ v w = x y
133 ralnex2 x X y X ¬ a b x y = a b a b φ v X w X a b v w = a b a b φ v w = x y ¬ x X y X a b x y = a b a b φ v X w X a b v w = a b a b φ v w = x y
134 132 133 sylib a b φ ¬ x X y X a b x y = a b a b φ v X w X a b v w = a b a b φ v w = x y
135 eqeq1 p = x y p = a b x y = a b
136 135 3anbi1d p = x y p = a b a b φ x y = a b a b φ
137 136 2exbidv p = x y a b p = a b a b φ a b x y = a b a b φ
138 eqeq1 p = v w p = a b v w = a b
139 138 3anbi1d p = v w p = a b a b φ v w = a b a b φ
140 139 2exbidv p = v w a b p = a b a b φ a b v w = a b a b φ
141 137 140 reuop ∃! p X × X a b p = a b a b φ x X y X a b x y = a b a b φ v X w X a b v w = a b a b φ v w = x y
142 134 141 sylnibr a b φ ¬ ∃! p X × X a b p = a b a b φ