Metamath Proof Explorer


Theorem ralnex2

Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Proof shortened by Wolf Lammen, 18-May-2023)

Ref Expression
Assertion ralnex2 xAyB¬φ¬xAyBφ

Proof

Step Hyp Ref Expression
1 ralnex yB¬φ¬yBφ
2 1 ralbii xAyB¬φxA¬yBφ
3 ralnex xA¬yBφ¬xAyBφ
4 2 3 bitri xAyB¬φ¬xAyBφ